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Vojtěch Vonásek

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague



Technical details

• Sampling-based planning relies on low-level routines
• Efficient implementation of these routines is necessary

• Random numbers generator
• Metric
• Nearest-neighbor search
• Collision-detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards

qrand
5 qnew = localPlanner from qnear towards

qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qnew

• These routines are required also in PRM, EST and all their variants



Generating random samples

Generation using standard rand()

• Many variants of random number generator (RNG)
• RNG is (usually) implemented as a Linear Congruent Generator (LCG)
• Fast, easy for usage, provides “enough” number of samples
• High dispersion (the largest empty ball according to the used metric)
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Generating random samples

Generation using standard rand()

• Many variants of random number generator (RNG)
• RNG is (usually) implemented as a Linear Congruent Generator (LCG)
• Fast, easy for usage, provides “enough” number of samples
• High dispersion (the largest empty ball according to the used metric)

PRM roadmap, note the “holes”→ due to the dispersion



Generating random samples

Alternatives to rand()

• Many libraries provide various RNG
• e.g., Boost, GSL, numpy

• GSL — GNU Scientific library, offers tens of random generators
• Most of them are based on LCG

Does RNG influence the performance of sampling-based planners?

• Test scenario: square robot, 3D C-space, narrow passage



Generating random samples
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• What can you conclude from this measurement?



Generating random samples

Using low-discrepancy sequences

• Halton/Hammersley deterministic sequences
• Number of samples must be known in advance
• Slower computation in comparison to basic rand()
• Lower dispersion than LCG-based rand()

Halton points Hammersley points

* J. M. Hammersley. Monte-Carlo methods for solving multivariable problems. Annals of the
New York Academy of Science, 86:844–874, 1960.



Technical details

• Random numbers generator
• Metric
• Nearest-neighbor search
• Collision-detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards

qrand
5 qnew = localPlanner from qnear towards

qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qnew



Metric I

• Sampling-based planners require a metric %(q1,q2), q1,q2 ∈ C
• Often used are Lp metrics:

%(x , x ′) =

(
n∑

i=1

|xi − x ′
i |

p

)1/p

• L2 is Euclidean metric
• L1 is Manhattan metric
• Metric for 1D rotation:

%(θ1, θ2) = min (|θ1 − θ2|,2π − |θ1 − θ2|)

• Metrics can be combined, let’s assume that C = X × Y with %X and %Y :

%(q,q′) =
(

cx%x (x , x ′)
p

+ cy%y (y , y ′)
p
)1/p

• where cx , cy ≥ 0 are weights

Remind that for a, b, c ∈ X in a metric space X and metric %: %(a, b) ≥ 0; %(a, b) = 0 if and only
if a = b; %(a, b) = %(b, a); %(a, b) + %(b, c) ≥ %(a, c)



Metric II

• 2D object, translation + rotation→ q = (x , y , ϕ) ∈ C

%(q,q′) =
√

c1((x − x ′)2 + (y − y ′)2) + c2%θ(ϕ,ϕ′)

• where %θ(ϕ,ϕ′) is the metric for 1D rotation
• The weights for translation c1 is “usually” bigger than c2,

so the effect of the rotation is suppressed
• Wrong setting of weights can worse motion planning

Correct Big weight on y- distance



Technical details

• Random numbers generator
• Metric
• Nearest-neighbor search
• Collision-detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards

qrand
5 qnew = localPlanner from qnear towards

qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qnew



Nearest-neighbor search

• Given a set S, find a nearest point towards a query q
• Alternatives:

• Find k nearest neighbors
• Find all neighbors in the range r

• Naïve O(n) search is too slow!

Challenges

• Fast query time
• Consider arbitrary metrics
• Dimensionality of S
• Fast preprocessing, low space

requirements



KD-trees: construction

• KD-tree is a binary tree, nodes represent a decision value
• Each level (of node) is for a different dimension

1

2

3

4 5

6

7
9

y

x

x 6

y
3 7

5 3 8 9
x

54 1
y

2

23

6 8 7 9
8

• Search is O(log n) for n points in the KD-tree
• Construction O(dn log n), n is number of points, d is dimension



KD-Tree: construction

Construction of kd-trees

• Compute median in the given axis, make a new node (decision)
• Split points to two sets based on the decision
• Recursively build left and right subtrees, each subtree works with the

next dimension
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KD-Tree: search
Principle of nearest-neighbor search

• Input is a point
• Traverse the nodes till the leaf (based on decision in each node)
• This locates a region that may contain a nearest neighbor
• Search also all surrounding regions



KD-Tree: issues

Usefull operations
• Inserting new item in O(log n)

• Removing existing item in O(log n)

KD-Tree issues
• Not suitable for other than Euclidean metrics
• Ineffective for large dimensions k
• It needs n� 2k data to achieve O(log n) performance, otherwise it

performs almost linear search
• Ineffective for non-uniform data



Geometric Nearest-neighbor Access Tree

Construction of GNAT

• Select m pivots c1, . . . cm ∈ S
• Assign each point in S to the nearest pivot, Dci (clusters)
• For each cluster Dci :

• Ri,j = [minx∈X %(ci , x),maxx∈X %(ci , x)], X = Dcj ∪ {cj}
• Ri,j = [low, high] are ranges of distances between ci and data points

of other clusters
• Build recursively the children ci with its points Dci
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GNAT: search

Nearest neighbor search towards a query point q

1 Start at root
2 Select a pivot ci

3 If e = %(q, ci ) ≤ r , report ci

4 If [e − r ,e + r ] ∩ Ri,j = ∅, we can prune node of cluster cj

5 Repeat steps 2–4 for all clusters i = 1, . . . ,m at the current level
6 For each non-pruned cluster ci , search its corresponding subtree
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GNAT: properties

Nearest neighbor search towards a query point q

• Assume m clusters at each node
• Construction (average) O(nm logm n), worst case O(n2)

• Space complexity O(mn)

• Search: time complexity is hard to analyze, experiments show that it’s ∼
logarithmic

• Practically, GNAT performs better for larger d than KD-trees
• GNAT works with arbitrary metric
• GNAT does not degenerate with non-uniform distributions



Technical details

• Random numbers generator
• Metric
• Nearest-neighbor search
• Collision-detection

1 initialize tree T with qinit
2 for i = 1, . . . , Imax do
3 qrand = generate randomly in C
4 qnear = find nearest node in T towards

qrand
5 qnew = localPlanner from qnear towards

qrand
6 if canConnect(qnear, qnew) then
7 T .addNode(qnew)
8 T .addEdge(qnear, qnew)
9 if %(qnew, qgoal) < dgoal then

10 return path from qinit to qnew



Collision detection

• Determines if/how objects collide/overlap/intersect/touch
• “Collision detection” covers two different techniques:

Collision-detection:

• True/False answer
• Fast, suitable for sampling-based planners

Collision-determination:

• Report details about collisions
• Identify which objects intersect
• Enumerate involved primitives
• Optionally computes the “penetration vector”, or

point of intersection
• Slower than collision-detection



Collision detection

Consider the manipulator at collision

• How can you react with collision-detection?
• How collision-determination helps to overcome the problem?



Collision detection (CD)

Geometric primitives
• Points, Lines, Circles, Triangles, Spheres, Cylinders, Rectangles
• Objects are constructed from these primitives
• The primitives determines which CD algorithm can be chosen
• CD relies on intersection tests between the primitives
• Convex shapes are always better, CD is faster with them

Collision detection between n and m primitives
• Naïve CD: O(mn)

• This can be too slow!



Bounding volume

• Reduce complexity of CD by replacing the original object by a simpler
object that contains the original one

• Represent an object by a Bounding Box (BB)
• If two BBs do not overlap, object inside cannot collide (fast test)
• If two BBs collide, further test is made using internal objects (slow test)

• BB should be geometrically simple to enable fast BB-vs-BB tests
• Spheres/circles, ellipses, rectangles
• BB should be as tight as possible to minimize false-positives



Rectangles as bounding boxes
• AABB — Axis Aligend Bounding Box

• Faces of bounding box are parallel to the coordinated system
• Very fast detection of overlap of two BBs
• Not suitable for ’rotated’ objects that lead to large BB

• OBB — Oriented Bounding Box
• Faces of BB are oriented according to the object
• Lower volume of BB, less false-positives
• Slower detection of BBs overlap than for AABB

• k-DOP — k Discrete Oriented Polytope
• Boolean intersection along k directions
• Axes of DOPs do not have to be orthogonal
• Generalization of AABB/OBB (e.g., AABB in 2D is 4-DOP)

AABB OBB k-DOP



Separation axis theorem

• Is used to determine overlap of two convex objects
• Two convex polytopes do not overlap if there exists a line onto which the

projection of the two objects do not overlap
• Separating line can be determined by testing all combinations of

lines/faces of both objects
• Convex objects!

Separating line

Separating axis



Bounding volume hierarchy

Bounding Volume Hierarchy (BVH)

• Original objects are recursively split to subsets
• BVH is a tree structure of bounding-boxes (BB) for each subset
• A Node in BVH is either a BB or a geometric object

B

A C
CB

A



BVH using ellipsoids

* S. Liu, C. C. L. Wang, K. Hui, X. Jin, H. Zhao. Ellipsoid-tree construction for solid objects.
ACM symposium on Solid and physical modeling, 2007.



Collision detection using BVH
• Broad phase

• Traverse BVH from the root
• At each level, evaluate overlaps between BBs
• If BBs do not overlap, return no-collision
• If BBs overlap, continue to child nodes

• Narrow phase
• for two overlapping BBs, perform collision detection

of their internal objects

• Hierarchical CD: O(log n) for n geometric primitives
• Building of BVH (depends on its type) takes at least O(n)
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A C
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CB

A

CB

A

CB

A

(BB vs BB) (BB vs BB) (Circle vs Triangle)



Notes on collision detection I
• Usual representation for 2D objects:

• Combination of boxes/spheres, polygons, triangulated polygons

• Usual representation for 3D objects:

• Combination of 3D geometric primitives (boxes,spheres,cylinders),
triangle mesh

• Note: triangle meshes are hollow→ detection of ‘object inside object’ is
not possible

No collision Collision No collision



Notes on collision detection II

• CD between objects of the same type is usually faster than between
objects of different types

• It’s a good practice to represent the robot by a combination of basic
primitives than using a full CAD model

Collision-detection Visualization, from CAD
∼ 100 triangles/robot ∼ 10k triangles + textures/robot



Local planners
• Sampling-based planners rely on a “local planner”
• Given configurations qa ∈ Cfree and qb ∈ Cfree, local

planner attempts to find a path τ :

τ : [0,1]→ Cfree

such that τ(0) = qa and τ(1) = qb, and τ must be
collision free!

• Two-point boundary value problem (BVP)

Types of local planners (revision)

• Exact: analytic solution to BVP, e.g., Dubins or Reeds
Shepp, straight-line (sometimes)

• Approximate: τ from qa with qnew that is near-enough
from qb, e.g., straight-line

• Black-box models: physical simulation, e.g., for situations
that cannot be solved analytically

qa

q
bτ

Exact local planner

qa

τ
qnew

q
b

Approximate

qa

q
bnewq

Straight-line



Local planner: System simulator
• Let’s assume a non-trivial scenario, e.g.,

• mobile robot moving on a undulating terrain
• or a legged robot walking on stones

• Analytic motion model is not easy to derive
• Instead, we can use a (physical) simulation
• Simulation is used as a “black-box”

x(t)

simulator
t

x(0)

u(t)~ Physical



Physical simulation
• Motion model of objects based on Newton physics
• Complex objects (robots) are composed of basic

primitives

• Spheres, Boxes, Cylinders
• Analytic collision determination

• Each object has shape, mass and mass-density
• Objects are connected using static/movable joints
• Each join has limits/maximal moments, speed (+

internal states)
• Internal state si of object i : position, rotation, velocity,

angular velocity

x(t)

simulator
t

x(0)

u(t)~ Physical



Physical simulation
Particle

• Position x(t), velocity v(t), and mass m
• Various forces Fi are applied on the particle
• Particle movement is not constrained
• F =

∑
Fi is the total (net) force

• F = ma(t), a(t) = v̇(t), v(t) = ẋ(t)
• Simulator computes a(t)→ v(t)→ x(t)
• Integration over time-step ε (resolution of the

simulation)
• Requires integration (Euler method, Midpoint,

Runge-Kutta,. . . )
• Particle has no rotation

x(t)

v(t)

F
2

F
1

F
3

x(t)

F
v(t)

simulator

Physicalparticle position
forces particle

new

positionttime-step



Physical simulation
Rigid body

• Center of mass (CM) x(t), orientation R(t) (around
CM)

• Translational velocity v(t) and angular velocity ω(t)
• Net force F(t)
• State vector is y(t) = (x(t),R(t),p(t),L(t))

• p(t) is impulse, L(t) is angular momentum
• Constants: mass m, inertia tensor
• Unconstrained motion
• Leads to ẏ(t) = f (t ,y(t))

• initial conditions: y(t0) = y0

• Solved by numerically

z y

x



Simulating collisions

Colliding contact

• Particle is falling to a table
• Integration goes by step ∆t : t0, t0 + ∆t , t0 + 2∆t , . . .
• Integration is terminated if collision happens
• The time of collision tc is estimated
• Change of velocities of colliding bodies is computed
• Simulation is started from tc with new velocities
• This ensures instant change of velocities after the

collision

Detection of tc assuming t0 < tc < t0 + ∆t

• Integration by intervals determined by the bisection
method

• Alternatively, obtain collision depth from CD and
accept tc if the penetration depth is less than ε

t
0+∆ t

t
0

t c

t
0+∆ t

t
0 tcε

ε



Contacts
• Vertex/face

• Vertex of one object is in contact with face of the other one
• The Normal vector of the face determine the ‘normal of the contact’

n̂
• Edge/Edge

• Two edges ea and eb (each from different object) are in collision
• n̂ = ea× eb (ea and ev are unit vectors)
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• Contacts pa(t0) and pb(t0), their velocity is ṗa(t0) and ṗb(t0)

• vrel = n̂(t0) · (ṗa(t0)− ṗb(t0))

• Value of vrel determines the type of collision



Contacts

Separating

• vrel > 0: bodies moving apart
• No reaction is needed
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Contact/resting

• vrel = 0
• No reaction is needed
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Colliding

• vrel < 0
• Compute the separating (penetration) vector,

apply force to separate the objects
• Penetration vectors are not unique for

non-convex objects
• The possible source of unstable simulation
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Main loop of simulator
Particle

1 Create objects, create joints, . . .
2 User callback (read/set variables, display, . . . )
3 Apply forces
4 Update velocities and positions
5 Detect collisions
6 Solve constraints
7 Goto 2
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Physical engines (sw. libraries)
• Box2D, Chimpunk physics engine (2D)
• ODE, Bullet, Newton Game Physics (3D)

Robotic simulators (usually with GUI)
• They use physical engine inside, but offer more functionalities:
• Visualization, tools for interactive design of robots, import/export from

URDF, sensors
• Gazebo, V-Rep (now CoppeliaSim), Webots, Player/Stage



Common issues of physical simulation
• If wrongly set up, it can “explode” or “freeze”
• Wrongly set up hinges, unrealistic masses, no gravity
• Too complex geometries→ too complex (slow)

collision detection
• Wrong friction parameters
• It’s better to prefer convex shapes (or composition of

them) if possible



Physical simulation in other fields
• 3D design/CAD simulation — design a machine and

see how it works

• Virtual reality — e.g. for realistic object manipulation

• Computer games — realistic behavior of objects
(without programming it)

• Evolving robots — evolutionary approaches to
design robots or their parts, simulation serves as the
fitness function evaluator



Physical simulation in other fields



Physical simulation as local planner
• Most of physical simulators (ODE, Bullet and their

derivatives) assume time-linear simulation
• In motion planning, we need a non-linear simulation
• We need to “restart” simulation for each tree expansion

RRT with system simulator

• Each node contains: x = (si ), i = 1, . . .n (simulator
state)

• Tree expansion from node xnear = x(0) using input u

• Set simulator to state xnear (restart)
• Apply control inputs u (usually joint moments)
• Run simulation for time ∆t
• Read simulator state x
• Add node x to the tree

• Usually several control inputs u ∈ U is tested
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Physical simulation: tricks

• Try to minimize number of objects/joints
• Avoid using triangle mesh for collision-detection

• Physical simulation needs collision determination (penetration
vector)

• CD may be unstable on (non-convex) meshes, simulation can
“explode”

• If possible, approximate robots by boxes/spheres/cylinders→ fast and
stable collision detection

• Use separate models for physics and visualization

Mass Collision-detection Visualization
10 boxes/robot ∼ 100 triangles/robot ∼ 10k triangles + textures/robot




