
B35APO: Computer Architectures
Lecture 03. Central Processing Unit (CPU)

Pavel Píša Petr Štěpán
pisa@fel.cvut.cz stepan@fel.cvut.cz

License: CC-BY-SA

15. March, 2024

? 1 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

Processor

Outline

1 Processor

2 Instruction Encoding

3 Blocks to Build Processor

4 Simple Single Cycle CPU Incremental Design

? 2 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

Processor

History of QtMips and QtRVSim Simulators
MipsIt used in past for our Computer Architecture course
QtMips has been used for APO course from summer term 2019

QtMIPS – master’s thesis of Karel Kočí supervised by Pavel Píša:
Graphical CPU Simulator with Cache Visualization, available at
https://dspace.cvut.cz/bitstream/handle/10467/76764/
F3-DP-2018-Koci-Karel-diploma.pdf
Fixes, extension and partial internals redesign by Pavel Píša

Switch to RISC-V architecture in 2022. Main work by Jakub Dupák
in 2021, see the master’s thesis Graphical RISC-V Architecture
Simulator - Memory Model and Project Management, available at
https://dspace.cvut.cz/bitstream/handle/10467/94446/
F3-BP-2021-Dupak-Jakub-thesis.pdf
Alternatives:

RARS: Risc-V Assembler and Runtime Simulator – IDE with detailed
help and hints, evolved from MARS –
https://github.com/TheThirdOne/rars
EduMIPS64: Java, superscalar pipeline 1x fixed and 3x FP pipelines –
https://www.edumips.org/? 3 / 46

https://dspace.cvut.cz/bitstream/handle/10467/76764/F3-DP-2018-Koci-Karel-diploma.pdf
https://dspace.cvut.cz/bitstream/handle/10467/76764/F3-DP-2018-Koci-Karel-diploma.pdf
https://dspace.cvut.cz/bitstream/handle/10467/94446/F3-BP-2021-Dupak-Jakub-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/94446/F3-BP-2021-Dupak-Jakub-thesis.pdf
https://github.com/TheThirdOne/rars
https://www.edumips.org/
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 3 (History of QtMips and QtRVSim Simulators)&issue[description]=You can report the issue or sugestion there.

Processor

QtRVSim - Download and Presentations

Windows, Linux, Mac
https://github.com/cvut/qtrvsim/releases
Ubuntu
https://launchpad.net/~qtrvsimteam/+archive/ubuntu/ppa
Suse, Fedora and Debian https://software.opensuse.org/
download.html?project=home%3Ajdupak&package=qtrvsim
Suse Factory TBD
Online version https://comparch.edu.cvut.cz/qtrvsim/app/
QtRvSim - RISC-V Simulator with Cache and Pipeline Visualization,
RISC-V International Academic and Training SIG meeting, 2023,
recording https://youtu.be/J6AcPZZ_ISg
QtRVSim—Education from Assembly to Pipeline, Cache
Performance, and C Level Programming, FOSDEM 2023, Brussels,
https://fosdem.org/2023/schedule/event/rv_qtrvsim/

? 4 / 46

https://github.com/cvut/qtrvsim/releases
https://launchpad.net/~qtrvsimteam/+archive/ubuntu/ppa
https://software.opensuse.org/download.html?project=home%3Ajdupak&package=qtrvsim
https://software.opensuse.org/download.html?project=home%3Ajdupak&package=qtrvsim
https://comparch.edu.cvut.cz/qtrvsim/app/
https://youtu.be/J6AcPZZ_ISg
https://fosdem.org/2023/schedule/event/rv_qtrvsim/
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 4 (QtRVSim - Download and Presentations)&issue[description]=You can report the issue or sugestion there.

Processor

John von Neumann Computer Block Diagram

Processor

Input Output

Memory

ctrl
ALU

5 functional units – control unit, arithmetic logic unit, memory, input
(devices), output (devices)
An computer architecture should be independent of solved problems. It has to
provide mechanism to load program into memory. The program controls what
the computer does with data, which problem it solves.
Programs and results/data are stored in the same memory. That memory
consists of a cells of same size and these cells are sequentially numbered
(address).
The instruction which should be executed next, is stored in the cell exactly
after the cell where preceding instruction is stored (exceptions branching etc.).
The instruction set consists of arithmetics, logic, data movement,
jump/branch and special/control instructions.

? 5 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 5 (John von Neumann Computer Block Diagram)&issue[description]=You can report the issue or sugestion there.

Processor

Computer based on von Neumann’s concept
Processor / microprocessor:

Control Unit – CU
Arithmetic-Logic Unit – ALU

Memory
von Neumann architecture uses common memory, whereas Harvard
architecture uses separate program and data memories
memory contains cells, i.e., addressable units of same given size
(today usually bytes – 8 bits)

Input/output subsystem:
Input – keyboard, mouse
Output – monitors, robotic actuators

Today most of peripheral devices functions as both, input, output,
network interfaces, disk, SSD, and primarily input or output units has
some monitoring and control channels

? 6 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 6 (Computer based on von Neumann's concept)&issue[description]=You can report the issue or sugestion there.

Processor

Control Unit and Data Path
The control unit is responsible for control of the operation processing and
sequencing. It consists of:

control logic circuits which represents core of the control unit (CU)
registers – they hold intermediate and programmer visible state

The general purpose registers are used to store actually processed data.
For C language programs, they are used to keep some actively processed
subset of local variables and temporary values required during expression
evaluation.
The flow of instructions and data through processor is usually divided into

data path – the way to load/store data from memory, pass them and
retrieve them from registers and to provide them to ALU inputs and
then route the results
control path – flow of instruction, their decoding controlling data
path according to algorithm

? 7 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 7 (Control Unit and Data Path)&issue[description]=You can report the issue or sugestion there.

Processor

The Most Important Registers of Processor

PC (Program Counter) – holds address of a recent or next instruction
to be processed
IR (Instruction Register) – holds the machine instruction read from
memory
Another usually present registers

GPRs (General purpose registers) – directly under user control, may be
divided to address and data or (partially) specialized registers
SP (Stack Pointer) – points to the top of the stack; (The stack is
usually used to store local variables and subroutine return addresses)
PSW (Program Status Word) – keeps state as user or system code
execution bit etc.
IM (Interrupt Mask) – controls acceptance of asynchronous evens
requests
FPRs (Floating point registers) – optional specialized register for
hardware floating point real numbers processing
more specialize groups possible – vector registers, multimedia ones, etc.

? 8 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 8 (The Most Important Registers of Processor)&issue[description]=You can report the issue or sugestion there.

Processor

The Main Instruction Cycle of the CPU

1 Initial setup/reset – set initial PC value, PSW, etc.
2 Read the instruction from the memory

PC→ to the address bus
Read the memory contents (machine instruction) and transfer it to the
IR
PC + l→ PC, point PC to next instruction, l is length of actually
processed instruction

3 Decode operation code (opcode)
4 Execute the operation

compute effective address, select registers, read operands, pass them
through ALU and store result

5 Check for exceptions/interrupts (and service them) – more in lecture 9
6 Repeat from the step 2

? 9 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 9 (The Main Instruction Cycle of the CPU)&issue[description]=You can report the issue or sugestion there.

Processor

Compilation: C → Assembler → Machine Code

/∗ ffs as log2(x)∗/
int x = 157;
int y = −1;

while(x != 0) {
x = x / 2;
y = y + 1;

}

_start :
// int x = 157;

addi a0, zero, 157
// int y = −1;

addi t1, zero, −1
// while (x != 0) {

beq a0, zero, done
loop:

// x = x / 2;
srli a0, a0, 1

// y = y + 1;
addi t1, t1, 1

// }
bne a0, zero, loop

done:

0x00000200: 09d00513

0x00000204: fff00313

0x00000208: 00050863

0x0000020c: 00155513

0x00000210: 00130313

0x00000214: fe051ce3

? 10 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 10 (Compilation: C $\to $ Assembler $\to $ Machine Code)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

Outline

1 Processor

2 Instruction Encoding

3 Blocks to Build Processor

4 Simple Single Cycle CPU Incremental Design

? 11 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 11 (Outline)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

Instruction Encoding Constrains
Analysis what fits in given instruction length?

Idea encode instruction byte, 8 bits, 256 combinations
Instruction has to encode operation code (opcode) and operands which
should be processed by operation (if not restricted to implicit only)
consider 8 registers, 3 bits to encode, two operands instructions only
regrsd = regrsd + regs1 or regrd = MEM[regs1]
6 bits to select registers → only 2 bits left → 4 operations in total
that is too small, alternative stack machine with implicit sources on top
of stack (usually followed by pop) and implicit destination push to
stack top, usually complex
extended bytes, immediate operands in byte following opcode and
register

16-bit instruction encoding, 65536 combinations
consider 16 registers, for three operands only 4 bits, 16 two operand
instructions left (4 + 3 * 4 bits)
usually only two operand (8 + 2 * 4 bits) instructions where 8 bits left
for opcode, 256 combinations

? 12 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 12 (Instruction Encoding Constrains)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

Instruction Encoding Constrains

32-bit instruction encoding, 4294967296 combinations
three operand regrd = regrs1 + regs2 intructions fit
common choice 32 registers, and even then 128 thousands three
operand instructions (17 + 3 * 5 = 32 bits)

The immediate values are required as well, add one to register, set
register to specific value

but addresses to whole memory are required for global variables for
example, if extended instruction words are undesirable, only small
offsets (12 or 16 bits) fit
the larger ones has to be stored into memory and reverenced by smaller
offset which fits into instruction
PC relative addressing or addressing against global pointer gp
RISC (RISC-V, MIPS, SPARC, POWER, etc.) – typical fixed length
encoding is 32 bits, 12 or 16-bit immediate
CISC (x86, m68k) – instruction variable length encoding, immediate
and even registers for extended addressing in followup bytes, words

? 13 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 13 (Instruction Encoding Constrains)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

RISC-V – Instruction Length Encodding
xxxxxxxxxxxxxxaa 16-bit (aa ̸= 11)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (bbb ̸= 111)

...xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

...xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

...xxxx xxxxxxxxxxxxxxxx xnnnxxxxx0111111 (80+ 16 · nnn)-bit
(nnn ̸= 111)

...xxxx xxxxxxxxxxxxxxxx x111xxxxx0111111 reserved for
≥ 192-bit

Address:
base+4 base+2 base

? 14 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 14 (RISC-V -- Instruction Length Encodding)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

RISC-V – Registers
Register ABI Name Description Saver
x0 zero Hardwired to zero
x1 ra Return address (from subroutine) Caller
x2 sp Stack pointer (for variables and save) Callee
x3 gp Global pointer (base for global data)
x4 tp Thread pointer (thread local store)
x5-7 t0–2 Temporaries (intermediates in computation) -
x8 s0/fp Frame pointer Callee

(base for local variable and call frame)
x9 s1 Saved registers (for local variables) Callee
x10–11 a0–1 Function arguments (when function called) -

/ Return values at end of function
x12–17 a2–7 Function arguments -
x18–27 s2–11 Saved registers Callee
x28–31 t3–6 Temporaries -
pc pc Program Counter (actual executed instruction)
f0-31 Floating point registers

Machine control and status registers
? 15 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 15 (RISC-V -- Registers)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

The Goal of This Lecture
To understand the implementation of a simple computer consisting of
CPU and separated instruction and data memory
Our goal is to implement following instructions:

Read and write a value from/to the data memory
lw – load word, sw – store word

Arithmetic and logic instructions: add, sub, and, or, slt
Immediate variants: addi, ori, load of upper bits lui,auipc

Program flow change/jump instruction beq
Subroutine call jal, jalr (provides even return from subroutine
jr ra)
CPU will consist of control unit and ALU (data path).
Notes:

The implementation will be minimal (single cycle CPU – all operations
processed in the single step/clock period)
The lecture 5 focuses on more realistic pipelined CPU implementation

? 16 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 16 (The Goal of This Lecture)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

The MIPS Instruction Formats and Instruction Types
Older but fits into three simple formats:
Type 31 ... 26 25 ... 21 20 ... 16 15 ... 11 10 ... 6 5 ... 0
R opcode(6) rs(5) rt(5) rd(5) shamt(5) funct(6)
I opcode(6) rs(5) rt(5) immediate(16)
J opcode(6) address(26)
type (R,I,J) is defined for each 6-bit opcode combination
5 bits allows to encode 32 GPRs (0 / zero is hardwired to 0 / discard)
rs – source register; rd – destination register; rt – alternative
destination or the second source
immediate, address – encoded direct operand value for ALU or
address for branches
shamt – immediate / constant for bit shift operations (<<, >>)
funct – for R type specifies ALU operation, addition, subtraction,
shift, etc.

? 17 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 17 (The MIPS Instruction Formats and Instruction Types)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

The RISC-V Instruction Format and Instruction Types
The six basic formats of the instructions are considered:

Type 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
R fnct7 rs2 rs1 fnct3 rd opcode
I imm[11:0] rs1 fnct3 rd opcode
S imm[11:5] rs2 rs1 fnct3 imm[4:0] opcode

B imm
[12]

imm
[10:5] rs2 rs1 fnct3 imm[4:1] imm

[11] opcode

U imm[31:12] rd opcode

J imm
[20] imm[10:1] imm

[11] imm[19:12] rd opcode

instruction type (R,I,S,B,U,J) and encoding length known from 7-bit
opcode
rs1, rs2 – source registers; rd – destination register

the register fields in given role on fixed position for all encodings
immediate – directly encoded operands for computation and
branches, distributed into unused register fields
fnct3, fnct7 – specifies executed operation (addition, subtraction,
shift, etc.) and memory operands width (byte, word, etc.)? 18 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 18 (The RISC-V Instruction Format and Instruction Types)&issue[description]=You can report the issue or sugestion there.

Instruction Encoding

RISC-V Encoding Codes Overview
The primary selection of operation is opcode:

Opcode The gorup / operation Actual operations for our subset
0110011 R-type (see func7 and func3) add, sub, slt, or, and
0010011 ALU-imm. (see func 3) addi, slti, ori, andi
0000011 Memory load (func3 with) lw
0100011 memory store (func3 width) sw
1100011 Branch (func3 condition) beq
1101111 Subroutine call jal
1100111 Return from subroutine jalr
0000111 Load immediate into upper register bits lui

Meaning of fnct3 and fnct7 for R-type instructions:
fnct7 fnct3 ALU operation
0000000 000 add
0100000 000 sub
0000000 010 slt
0000000 110 bitwise or
0000000 111 bitwies and

? 19 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 19 (RISC-V Encoding Codes Overview)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Outline

1 Processor

2 Instruction Encoding

3 Blocks to Build Processor

4 Simple Single Cycle CPU Incremental Design

? 20 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 20 (Outline)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Realize Register in Hardware

Basic realization of register from d-latch circuit

D

E

Q

Q

This circuit is a big change from the previous approach, because there is a
feedback (loop) – the output of the gate is the input of the same gate, or
the input of the other gate whose output is the input of the first gate.
So what does it do?

? 21 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 21 (Realize Register in Hardware)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Realize Register in Hardware

The circuit actual function is determined by E input (Enable).
Analyze circuit for E=1 the first:

D=1

E=1

Q

Q

D=0

E=1

Q

Q

has to
be 1

has to
be 1

0

0

0

0

0

1

1

1

The D input propagates Q
output after delay

when D = 1 then output has
to become Q = 1, because
one of inputs to last gate is 0,
and NAND output becomes 1
when D = 0 then output has
to become Q = 1, again one
input to corresponding NAND
gate is 0, when Q = 1, then
output Q = 0, because both
inputs of driving gate ate 1,
NAND output has to be 0

? 22 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 22 (Realize Register in Hardware)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Realize Register in Hardware

If the enable input is deactivated (E=0):

D=*

E=0

Q

Q

D=*

Q

Q

Q and Q keeps their
previous states

1

1

1

1

E=0

1

1

0

0 The state of Q,Q outputs
depends only on previous value
of Q,Q
The one of states Q = 1,Q = 0
or Q = 0,Q = 1 is preserved
from last situation when E = 1

? 23 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 23 (Realize Register in Hardware)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Realize Register in Hardware
Activation by clock signal rising edge:

E

E

E'

E'

E'

E
0

1

0

1

Is it possible that output of such
circuit reaches active (1) state?
for ideal/matthematic case no
(C and C) = 0
in reality, however, the gate output
is delayed compared to the direct
bypass signal and for this delay time
the output is E' v 1

if this value is too short compared to the d-latch circuit settle time,
then it is possible to add more consecutive negations (green curve)
the variant of sequential circuit which state is recorded at clock signal
edge is called d flip-flop

? 24 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 24 (Realize Register in Hardware)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Hardware Realization of CPU Instruction Cycle

PC

32-bit register
Program Counter

Add

Memory

constant
or inst. size
 4

instruction
32 bits

CLK

The PC register is updated to PC+4 (advanced by instruction length) at
clock (CLK) signal rising edge which causes start of the fetch of following
instruction from memory.

? 25 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 25 (Hardware Realization of CPU Instruction Cycle)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Processor Basic Building Blocks
CLK

32 32

single 32-bit wide register, the input store at CLK rising edge

CLK

32

32

WE3

32

5

5

5

A1

A2

A3

WD3

RD1

RD2

registry

32 registers in register file, A1, A2 inputs select which register values
are connected to RD1 and RD2 outputs; if WE3 (write enable) insputs
is active then WD3 input state is written to register designated by A3
at CLK signal rising edge

Select

0

1

Multiplexor

multiplexer copies one of its input signals to the output according to
Select input value

32

32

32

A
L
U

ALUControl

zero

SrcA

SrcB
ALUout

the operation chosen by ALUControl signal is applied to inputs SrcA
and SrcB. Result is available on ALUout signal and flags reflects result
conditions, i.e., sign or indicate zero value

 Imm
decode

chooses bits used for immediate encoding and applies sign extension
to 32 bits signed value

? 26 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 26 (Processor Basic Building Blocks)&issue[description]=You can report the issue or sugestion there.

Blocks to Build Processor

Processor Basic Building Blocks – Memory

3232
A RD

Instruction

memory

Instruction memory provides data stored in the memory cell/word
indexed by address input A on its output RD. Data are available
after interval ”long enough” to stabilize address decoder and prop-
agate value to the output RD (the read access time).

CLK

32

32

WE

32
A

WD

RD

Data

memory

Data memory. In read mode, it delivers memory cell/word content
indexed bay address A onto RD output (again read access time has
to be respected). If the input WE (write enable) is active then data
stable for long enough setup time are stored into selected word at
rising edge of the clock (CLK). The time from data and address
ready to stable data writes into cell is called write access time.

? 27 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 27 (Processor Basic Building Blocks -- Memory)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Outline

1 Processor

2 Instruction Encoding

3 Blocks to Build Processor

4 Simple Single Cycle CPU Incremental Design

? 28 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 28 (Outline)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Load Word Instruction - LW
lw – load word – load word from data memory into a register
Description A word is loaded into a register from the specified address
Operation [rd] ← Mem[[rs1]+imm12]
Syntax lw rd, imm12(rs1)
Encoding iiii iiii iiii ssss s010 dddd d000 0011

s – rs1; d – rd; i – immediate

Example: Reads 32-bit word stored at address 0x400 in memory into
register 2:
lw x2, 0x400(x0)
iiii iiii iiii ssss s 010 dddd d000 0011
0100 0000 0000︸ ︷︷ ︸

0x400
0000 0︸ ︷︷ ︸

0
010︸︷︷︸
func3

0001 0︸ ︷︷ ︸
2

000 0011︸ ︷︷ ︸
opcode

0x 40 00 21 03 – machine code lw x2, 0x400(x0)
Remark: x0 register provides fixed zero value which is not changed even by
write

? 29 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 29 (The Load Word Instruction - LW)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Load Word Instruction – Implementation
lw: rs1 – base address, imm12 – address offset, rd – register where to store fetched
data

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
I imm[11:0] rs1 fnct3 rd opcode

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

11:7

Imm
decode

ALU

ALUControl

SignImm

? 30 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 30 (The Load Word Instruction -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Load Word Instruction – Implementation
lw: rs1 – base address, imm12 – address offset, rd – register where to store fetched
data

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
I imm[11:0] rs1 fnct3 rd opcode

Write to register at the rising edge of the clock

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

11:7

ALU

ALUControl
RegWrite = 1

Imm
decode

? 31 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 31 (The Load Word Instruction -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Load Word Instruction – Implementation
lw: rs1 – base address, imm12 – address offset, rd – register where to store fetched
data

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
I imm[11:0] rs1 fnct3 rd opcode

PC’ PC Instr 19:15

31:20

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

11:7

ALU

ALUControl
RegWrite = 1

4

PCPlus4

+
Imm

decode

? 32 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 32 (The Load Word Instruction -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

QtRvSim - RISC-V Simultaor

CPU core view
single cycle
pipelined

Registers

Code

Peripherals

Cache

Terminal

Data memory

Terminal

Editor

Assembler

Exceptions
control

MakeSingle StepRunLoad

? 33 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 33 (QtRvSim - RISC-V Simultaor)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Store Word Instruction - SW

sw – store word – store word in a register to data memory

Description Stores a value in register rs2 to given address in memory
Operation Mem[[rs1]+imm12] ← [rs2]
Syntax sw rs2, imm12(rs1)
Encoding iiii iiit tttt ssss s010 iiii i010 0011

t – rs2; s – rs1; i – immediate

Example: Store word in register 2 to memory address computed as addition
of value in register 5 and constant 0x404, bit symbol t used for rs2:
sw x2, 0x404(x5)
iiii iii t tttt ssss s 010 iiii i010 0011
0100 000︸ ︷︷ ︸

0x40_
0 0010︸ ︷︷ ︸

2
0010 1︸ ︷︷ ︸

5
010︸︷︷︸
func3

0010 0︸ ︷︷ ︸
0x_04

010 0011︸ ︷︷ ︸
opcode

0x 40 22 a2 23 – machine code sw x2, 0x404(x5)
? 34 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 34 (The Store Word Instruction - SW)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

The Store Word Instruction – Implementation
sw: rs1 – base address, imm12 – address offset, rs2 – selects register to store into memory

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
S imm[11:5] rs2 rs1 fnct3 imm[4:0] opcode

PC’ PC Instr 19:15

31:25, 24:20
11:7

SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

11:7

ALU

ALUControl
RegWrite = 0

4

PCPlus4

+

MemWrite = 1

24:20

Imm
decode

WriteData

? 35 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 35 (The Store Word Instruction -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Instruction for Two Registers Addition – ADD
add – addition – add content of two registers and store it to destination
one

Description Add together values in two registers (rs1 + rs2)
and stores the result in register rd

Operation [rd] ← [rs1] + [rs2]
Syntax add rd, rs1, rs2
Encoding 0000 000t tttt ssss s010 dddd d011 0011

t – rs2; s – rs1; d – rd

Example: Add values in registers 2 and 3 and store result into register 4:
add x4, x2, x3
0000 000 t tttt ssss s 000 dddd d011 0011
0000 000︸ ︷︷ ︸

funct7

0 0011︸ ︷︷ ︸
3

0001 0︸ ︷︷ ︸
2

000︸︷︷︸
func3

0010 0︸ ︷︷ ︸
4

011 0011︸ ︷︷ ︸
opcode

0x 00 31 02 33 – machine code add x4, x2, x3
? 36 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 36 (Instruction for Two Registers Addition -- ADD)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Two Registers Addition – Implementation
add: rs1, rs2 – sources, rd – destination register to store result

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
R fnct7 rs2 rs1 fnct3 rd opcode

PC’ PC Instr 19:15 SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 1

4

PCPlus4

+

24:20

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData

0
1

Imm
decode

31:25, 24:20
11:7

11:7

? 37 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 37 (Two Registers Addition -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

More Arithmetic Instructions – SUB, AND, OR, SLT

Another ALU operation selection (ALUcontrol) is only difference to
addition. The data path is the same as for add instruction.

PC’ PC Instr 19:15 SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 1

4

PCPlus4

+

24:20

ALUSrc = 0

Result0
1

MemToReg = 0

WriteData

0
1

Imm
decode

11:7

31:25, 24:20
11:7

? 38 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 38 (More Arithmetic Instructions -- SUB, AND, OR, SLT)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Add Immediate Value to register – ADD
addi – addition immediate – add immediate constat value to register
and store result into destion register

Description Add rs1 and imm12 value and store result into rd
Operation [rd] ← [rs1] + imm12
Syntax addi rd, rs1, imm12
Encoding iiii iiii iiii ssss s000 dddd d001 0011

i – immediate; s – rs1; d – rd

Example: Increment register 7 value by 4 (store result into sama register 7
as is source):
addi x7, x7, 4
iiii iiii iiii ssss s 000 dddd d001 0011
0000 0000 0100︸ ︷︷ ︸

0x004
0011 1︸ ︷︷ ︸

7
000︸︷︷︸
func3

0011 1︸ ︷︷ ︸
7

001 0011︸ ︷︷ ︸
opcode

0x 00 43 83 93 – machine code addi x7, x7, 4
? 39 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 39 (Add Immediate Value to register -- ADD)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Operations with Immediate Value – ADDI, ORI, ANDI
addi – add immediate: [rd] ← [rs1] + imm12 – add immediate constat value
imm to register rs1 and store result into destion register rd

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0
I imm[11:0] rs1 fnct3 rd opcode

PC’ PC Instr
SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 1

4

PCPlus4

+

ALUSrc = 1

Result0
1

MemToReg = 0

WriteData

0
1

Imm
decode

19:15

24:20

11:7

31:25, 24:20
11:7

? 40 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 40 (Operations with Immediate Value -- ADDI, ORI, ANDI)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Branch on Equal Instruction – BEQ
beq – branch if equal: [pc] ← [pc] + SignImm – adds offset imm in the range
-4096 to +4094 to the actual instruction address (pc) and continue execution at that
address pc if the values stored in rs1 and rs2 are equal

Typ 31 30...25 24...21 20 19...15 14...12 11...8 7 6...0

B imm
[12]

imm
[10:5] rs2 rs1 fnct3 imm[4:1] imm

[11] opcode

PC’ PC Instr
SrcA

SrcB

Zero

AluOut

SignImm

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3
ALU

ALUControl
RegWrite = 0

ALUSrc = 0

Result0
1

MemToReg = x

WriteData

Branch = 1

0
1

0
1

Imm
decode

31:25, 24:20
11:7

19:15

24:20

11:7

+ PCBranch

+
4

PCPlus4

? 41 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 41 (Branch on Equal Instruction -- BEQ)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Single cycle CPU – Throughput: IPS = IC / T

+
4

PC
PCBranchPCPlus4

PC’ Result

SrcB

31:25, 24:20
11:7

19:15PC Instr

24:20

11:7

SrcA Zero

AluOut

WriteData
WriteReg

ReadDataInstr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

0
1

0
1

0
1

Imm
decode

ALU

+

SignImm

T
c
 = t

PC
 + t

Mem
 + t

RFread
 + t

ALU
 + t

Mem
 + t

Mux
 + t

RFsetup

? 42 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 42 (Single cycle CPU – Throughput: IPS = IC / T)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Single cycle CPU – Longest Path

What is the maximal possible frequency of the CPU?
The all combinational circuits in the longest path has to settle
(propagate values) with enough setup time, the worst case is lw
instruction:

tPC = 0, 3 ns
tMem = 20 ns
tRFread = 1, 5 ns
tALU = 2 ns
tMux = 0, 1 ns
tRFsetup = 0, 1 ns

The sum for the longest cycle
TCLK = tPC + tMem + tRFread + tALU + tMem + tMux + tRFsetup = 44 ns
The corresponding frequency fCLK = 1

TCLK
= 22, 7 MHz, that is

22 700 000 instructions per seconds = 22,7 MIPS
We need to speedup execution, the topics for lecture 5

? 43 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 43 (Single cycle CPU – Longest Path)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Processor Control Unit – Purpose
It transform machine instruction bits opcode and fnct3,7 to the control
signals ALUControl, RegWrite, MemWrite, ALUSrc, MemToReg, Branch
and some more for complete CPU

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUScr
TypeRISBUJ

RegWrite

+

+
4

PC’ PC Instr 19:15

24:20

11:7

15:0, 24:0
11:7

SrcA

SrcB

Zero

AluOut

WriteData
WriteReg

PC
PCBranch

ReadData

Result

PCPlus4

Instr.
Memory

A RD

Data
Memory

A RD

WD

WE

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3

0
1

0
1

0
1

Imm
decode

6:0

31:25, 14:12

Control
Unit

Opcode

Funct

SignImm

ALU

? 44 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 44 (Processor Control Unit -- Purpose)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Processor Control Unit – Implementation

Podle Opcode lze nadefinovat výstupy řadiče:

Instruction Opcode Fnct3 Fnct7 AL
UC

on
tro

l

AL
US

rc
Re

gW
rit
e

M
em

W
rit
e

M
em

To
Re

g

Br
an
ch

lw 0000011 010 – + 1 1 0 1 0
sw 0100011 010 – + 1 0 1 0 0
add 0110011 000 0000000 + 0 1 0 0 0
sub 0110011 000 0100000 - 0 1 0 0 0
slt 0110011 010 0000000 < 0 1 0 0 0
or 0110011 110 0000000 | 0 1 0 0 0
and 0110011 111 0000000 & 0 1 0 0 0
addi 0010011 000 – + 1 1 0 0 0
beq 1100011 000 – == 0 0 0 x 1

? 45 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 45 (Processor Control Unit -- Implementation)&issue[description]=You can report the issue or sugestion there.

Simple Single Cycle CPU Incremental Design

Possible Ways to Implement Control Unit
Realized directly by a logic circuit design:

Combinational logic (our example),
Sequential logic circuit - state machine, etc.

Microprogrammed control unit (controller by microprogram):
The microprogram is stored in the control memory of the controller and
consists of microinstructions.
The microprogram implements machine instructions visible to the
programmer (add, sub, lw, xor, jmp,. . .).
The instruction opcode specifies the address of the first microinstruction in
control memory from which the microprogram for that instruction begins.
Each of the ISA instructions is executed using one or more
microinstructions.
Advantage: a controller flexibility: ISA can be updated, extended by
changing the microprogram
Disadvantages: more complex and unsuitable for pipelined processors where
each stage executes a different instruction. Today used for sequential
translation of such CISC instructions which are too complex to be translated
into one or more RISC like microoperations directly by combinational logic

? 46 / 46

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture03-cpu-en, slide 46 (Possible Ways to Implement Control Unit)&issue[description]=You can report the issue or sugestion there.

	Processor
	Instruction Encoding
	Blocks to Build Processor
	Simple Single Cycle CPU Incremental Design

