B35AP0O: Computer Architectures

Lecture 04. Memory Hierarchy

Pavel Pisa Petr Stépan
pisa@fel.cvut.cz stepan@fel.cvut.cz

License: CC-BY-SA

CTU

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

ﬂu@g

13. March, 2024

1/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

Memory — Introduction

Outline

Memory — Introduction

o 2/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

Memory — Introduction

Motivation
Algorithm A Algorithm B
int matrix[N] [N]; int matrix[N] [N];
int main() { int main() {
long int i, j, suml = O; long int i, j, suml = O;
for(i=0; i<N; i++) for(i=0; i<N; i++)
for(j=0; j<N; j++) for(j=0; j<N; j++)
suml += matrix[i] [j]; suml += matrix[j][i];
} }

Both algorithms have the same result and use the same approach.
Program A iterates matrix column by column, and program B iterates row
by row.

Is there a rule how to iterate over matrix elements efficiently? Which one
is faster?

] 3/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 3 (Motivation)&issue[description]=You can report the issue or sugestion there.

Memory — Introduction
Motivation — Speed Revealed

Algoritmus A

int matrix[N] [N];
int main() {
long int i, j, suml = O;
for(i=0; i<N; i++)
for(j=0; j<N; j++)
suml += matrix[i] [j];

}
N A B
100000 | 12.791328s | 138.047563s
10000 | 0.126945s | 0.486535s
1000 0.001329s | 0.001756s
100 0.000083s | 0.000094s
[

Algoritmus B
int matrix[N] [N];
int main() {
long int i, j, suml = O;
for(i=0; i<N; i++)
for(j=0; j<N; j++)
suml += matrix[j][i];

4/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 4 (Motivation -- Speed Revealed)&issue[description]=You can report the issue or sugestion there.

Memory — Introduction

What is the Memory

FFF...FFH memory location
%,_—7|holds value — content
< 4/
address
width n bits
L
n
8
v 16
000000H
The most common size of addressable a2

memory unit is 1B (8 bits)

1 data path
usual width

32b/4B

Zn
256 distinct locations
64K (K=1024)

4G (4096M, M=K 2)

5/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 5 (What is the Memory)&issue[description]=You can report the issue or sugestion there.

Memory — Introduction

What is the Memory — Description

Memory:
m it is array of addressable memory cells

m all cells (elements) have the same size — 8-bits (byte) is usual or multiple
by two power
m physical address space capacity is limited by number of bits forming
address signal generated by CPU (ISA addressing modes) which are
sent to address bus. For memory organize by bytes:

m 16-bit address allows to access cells in 64 KiB of memory

m 32-bit address allows to access 4 GiB of memory capacity

m 37-bit address (maximum for Intel Core i9-13900K when mainboard
support is as well) allows to address in 128 GiB of capacity

m Access types, rules:

m the internal memory of the computer allows access in random order
(= random access — RAM)

m some of external memory (for example magnetic tape used for backup —
cheaper than HDD and SSD) allows only sequential access, that is
reading and writing of bytes in the fixed order

m in HDD, SSD and Flash cases, only read or write by whole block is
possible; for SSD/Flash is write possible on block basis and it is possible
only once after much larger holding erase blocks is reset into initial
consistent state.

6/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 6 (What is the Memory -- Description)&issue[description]=You can report the issue or sugestion there.

Memory — Introduction

Semiconductor Memory — Basic Terms

Address input, it selects exactly one cell (entry) for next data read or
write access (same as index for array in C language)
Value (data) the corresponding cell data or signals to read or write them
control signals set of signals choosing read or wrote operation, data

validity, or used for redundancy which allows even bit-flip
corrections

Main semiconductor memory parameters:

Access time (latency) the time interval from the request to data access to
their availability to the requester

Read /write cycle time access time (with precharge for DRAM) + refresh
after destructive read + required idle time to next access

Throughput/bandwidth main performance indicator. Rate of transferred
data units per time.

parameters can appear in the datasheet as maximal, average
and minimal required

7/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 7 (Semiconductor Memory -- Basic Terms)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Outline

Semiconductor Memories — HW Realization

o 8/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 8 (Outline)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Memory Types and Required Maintenance

Division of memories according to write operation mehanism:
= ROM (Read-Only Memory) memories that can only be read from
(content defined ta production), include EEPROM (Electrically
Erasable Programmable Read-Only Memory) requiring high voltage
for erase and then allow write new data, write is not normal operation.
® RAM (Random Access Memory) also RWM (Read-Write Memory)
classic memories designed for reading and writing any cell in any order
— Random Access.
Division according data preservation when power is turned off and on:
= Permanent (Non-volatile) memory does not need power to keep
information - e.g. Flash, EEPROM, EPROM, ROM, ferromagnetic
memories, HDD, SSD, 3D-X Point — Intel Optane Memory
= Volatile (Volatile) for example DDR memory SDRAM, SRAM, cache
in classical computer, continuous power (and data refresh for DRAM)
is needed to maintain information.
) 9/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 9 (Memory Types and Required Maintenance)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Memory Realization by Electrical Circuit

According to the realization, we divide RAM (RWM) into:

Static RAM — a physical quantity
representing a value has a constant
value over time. Typically two loop-

SRAM connected inverters. Multiple com-

DRAM

ponents, more expensive, nho peri-
odic maintenance required, only needs
power supply

Dynamic RAM - a quantity (voltage)
changes its value over time. Typi-
cally a capacitor that discharges spon-
taneously and therefore it is necessary
to refresh the information at regular
times. Only a capacitor and a transis-
tor — cheap, takes less space.

bitline bitline

wordline
logic level

as bit value

bitline
wordline |
voltage J_
represents
stored bit™
value
VREF

10/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 10 (Memory Realization by Electrical Circuit)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Static Memory (SRAM) — Cell Detail

Fully static circuit (positive feedback)
Requires power supply (volatile memory) to maintain information
Disadvantage, needs 6 transistors, large area
Reading, after selecting a word (world line — WL) the data is
transferred to the respective non-powered conductor (bit line — BL)
m Writing — connecting bit line and it inverted signal to log. 1 and log.

0 or vice versa will force the state with a greater current than on the

inverter outputs in internal positive loop
o 11/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 11 (Static Memory (SRAM) -- Cell Detail)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Dynamic memory (DRAM) — Cell Detail

bitline
wordline |
voltage I_
represents _ b i Vol ¥
stored bit_l_ ‘
value) . Al
Vrer e g“ @” %

m nMOS transistor represents a switch that connects (or not) the
capacitor to the "bitline” conductor. The connection is controlled by
the "wordline” conductor.

m The reading process discharges the capacitor. Therefore, it must be
restored afterwards.

m Refreshing of memories (refresh) — the charge is spontaneously lost
from the capacitor. Necessary working phase of dynamic memory.
Negatively affects (prolongs) the average access time.

12/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 12 (Dynamic memory (DRAM) -- Cell Detail)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Memory Array Organization — the Principle

address

6 = 0110

clock ——

1a1s1691

Decoder
one-hot biine3 bitine2 bitinel bitline 0
row 0
T T T |
stored stored stored stored
bit= 0 bit=1 bit= 0 bit=0
1 row 1
I stored I stored I stored I stored
2 row2 LDoit=1 |_ bit=0 |_ bit=0 |_‘ bit=0 |_
|
stored stored stored stored
0L\ 3 bit= 1 bit= 1 bit= 0 bit= 0
Q row 3
A4 ? ? 1
0110 stored stored stored stored
bit= 0 bit=1 bit= 1 bit=1
[
Data 3 Data 2 Data 1 Data 1
10
%@ @ 1 0
* Multiplexer
0 lof4

13/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 13 (Memory Array Organization -- the Principle)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

SDRAM Packaged as Dual In-Line Memory Module

S columns
&
5 L—1
NES
> 1
‘é’ =
] N
I~
banlk
—
[row bufer 1]

Dual In-Line Memory Module (DIMM), 64-bit data path, Synchronous
Dynamic Random Access Memory (SDRAM), operation and signals
synchronized (S in abbreviation) by clock

o 14/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 14 (SDRAM Packaged as Dual In-Line Memory Module)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Non-Uniform
Memory
CcPU, cPU, Architecture
RAM
RAM RAM
v ¢ Y A A
RAM <> MC | mc H - 3
i ; MC MC
Northbridge [mc H Northbridge =
i : 9 cpu,[lcpu,
3 N 2 N A
\\/ RAM \\/ —
SATA <>| SATA < SATA <
USB <>Southbridge USB <> Southbridge USB <>Southbridge
PCI-E <> PCI-E <> PCI-E <>

MC - Memory controller — provides read and write control to SDRAM. It
also controls refresh of information of each memory cell once every 64 ms
typically (iterates over whole memory row by row and cells in each row are

refreshed simultaneously).

15/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 15 ()&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Most Frequently Used Dynamic Memory Types

m SDRAM - clock frequency up to 100 MHz, 2.5V, synchronous data
transfer on the clock edge

= DDR SDRAM - data transfer on both clock signal edges, 2.5V, 1/0
clocks up to 100-200 MHz, 0.2-0.4 GT /s (billions of transmissions per
skund)

= DDR2 SDRAM - lower power consumption, 1.8V, frequency up to
400 MHz, 0.8 GT/s

m DDR3 SDRAM - even lower power consumption at 1.5V, frequency
up to 800 MHz, 1.6 GT/s

= DDR4 SDRAM - 1.05 - 1.2V, |/0 bus clock 1.2 GHz, 2.4 GT/s
= DDR5 SDRAM - 1.1V, up to 6.4 GT/s
All of these types are predominantly optimized for throughput, not random

access, latency 20 to 35 ns.

] 16 /49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 16 (Most Frequently Used Dynamic Memory Types)&issue[description]=You can report the issue or sugestion there.

Semiconductor Memories — HW Realization

Memory and CPU Speed Evolution in History

CPU performance inc. 25% 52% 20%

er year er year . er year
100 000,00 -~ Po T pr] Peryeal . R

10 000,00 v——————%———————————————————5 > - -- Processor-
: Memory

100000 d---oo- P CPU __» P _ Performance
g : : ! Gap Growing
5 10000 «———————?——————— ——————————i —————
]
o :

10,00 H-------ipf---------- - i

Troughput of memory
only +7% per year
1

T T T —
1980 1985 1990 1995 2000 2005 2010

1,00

Source: Hennesy, Patterson

Year CaaQA 4" ed. 2006

() 17/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 17 (Memory and CPU Speed Evolution in History)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Outline

Cache Memory to Speed Up Data Access

o 18/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 18 (Outline)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Memory Hierarchy from CPU Registers to SSD

CPU
Control unit Vi Secondary
ain
Ao]) |
DRAM
Ee?ttr? ? cache|| [SRAM ()
@
Type L1 SRAM Sync SRAM DDR3 HDD
Velikost | 32kB 1 MB 16 GB 3TB

Cena 10 k¢/kB 300 k&/MB 123 k&/Gb 1 k¢/GB
Rychlost | 0.2..2ns 0.5...8 ns/word 15 GB/sec 100 MB/sec

Some data may exist in multiple copies (levels, SMPs). Modifying data
requires mechanisms to maintain the coherence (mostly by HW) of words
and consistency of data structures (programmer care required).

] 19/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 19 (Memory Hierarchy from CPU Registers to SSD)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Memory Hierarchy — Fundamental Principles

m Programs/processes access only a small portion of their address space
at a time
m Temporal locality
m Items accessed recently will be needed again soon
m Example: program loop, function local and induction variables
m Spatial locality
m Items near those accessed recently are likely to be accessed soon
m Example: sequence code access (program memory), data arrays
sequential access (data memory).
The principle considered on all levels, in algorithms (local variables),
compilers (move to registers), between memory levels (automatically),
operating system (move pages between disk and main memory) or again
programmatically, reading and writing to files or caching web pages.

] 20/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 20 (Memory Hierarchy -- Fundamental Principles)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Memory Hierarchy Introduced Based on Locality

m The solution to resolve capacity and speed requirements is to build
address space (data storage in general) as hierarchy of different
technologies.

m Store input/output data, program code and its runtime data on large
and cheaper secondary storage (hard disk)

m Copy recently accessed (and nearby) items from disk to smaller
DRAM based main memory (usually under operating system control)

m Copy more recently accessed (and nearby) items from DRAM to
smaller SRAM memory (cache) attached to CPU (hidden memory,
transactions under HW control), optionally, tightly coupled memory
under program’s control

= Move currently processed variables to CPU registers (under machine
program /compiler control)

] 21/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 21 (Memory Hierarchy Introduced Based on Locality)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Cache Memory to Overcome CPU Speed Growth Gap

m component that (transparently) stores data so that future requests for
that data can be served faster

m transparent cache — hidden memory

m the purpose of hidden memory is to speed up access to frequently
used data on "slow" media by copying it to fast media.

m it mostly works automatically and adapts to the current needs of the
program.

m however, it is necessary to know about its existence and often needs
servicing at the level of the operating system and, in some cases, even
programs.

m if you choose data structures, access paterns and algorithms unwisely,
its effect is lost.

] 22/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 22 (Cache Memory to Overcome CPU Speed Growth Gap)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Cache Memory — Terms Definition

m Cache hit naming the situation when the data for requested address is
found in the cache.

m Cache miss, opposite, search failure, the data is not yet in the cache.

m Cache line (line) or Cache block — the basic copieable unit between

hierarchical levels.

In practice, the size of the Cache line varies from 8B to 1KB, typically

64B.

m Hit rate — the number of memory accesses served by a given cache

level divided by all accesses

Miss rate — the ratio of accesses to be served from slower memory =

1 - Hit rate

Average Memory Access Time (AMAT)

AMAT = HitTime 4+ MissRate x MissPenalty

m AMAT for multi-level cache can be calculated by recursively applying
the aforementioned relationship

] 23/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 23 (Cache Memory -- Terms Definition)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Cache Memory — Implementation

Data | Flags

‘ Cache line of fully associative cache ‘

| comparator [<— [Tog | Data | Flags |

v

~{ comparator |<—]|

| |

m Tag is the index of the corresponding block in the operating memory
(basically, it is the value of the pointer/address divided by the length
of the block or cache way — see later).

m Data is an array containing actual values at the corresponding
address(s).

= Validity bit — indicates whether the contents of the Data field are
even valid.

m Dirty bit — indicates that there is a different value in the cache than in
the main memory.

m more additional bits (metadata) attached to memory content can be
required for SMP and maintenance

24/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 24 (Cache Memory -- Implementation)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Processing of Cache Miss Situation

m Data must be loaded from main memory, but usually all cache entries
are already filled with data retained from a previous run of the
program.

m One of the blocks that can be used to store data from the given
address needs to be released.

m Deciding an block to discard is very important, if the one that will be
needed again is selected, performance will decrease.
m Cache replacement policy — rules for selecting an item to discard
m Random - the selected block is at random position in the cache
m LRU (Least Recently Used) — the selected block is the longest unused
one, additional information must be added to the cache circuits to each
block group to track the order of recent hits for each item.
m LFU (Least Frequently Used) — tracks how often/how many times the
blocks are accessed, requires adding forgetting.
m ARC (Adaptive Replacement Cache) - combination of LRU and LFU

] 25/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 25 (Processing of Cache Miss Situation)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Processor Writes to Cached Main Memory

m Cache is on the way that may contain the block being written to.

m At least from the point of view of the given processor, it is necessary
to ensure the data coherence for the given processor (often for
multiple processors — threads) for accessing each individual address
even if there are multiple access paths

m Write through cache — if the data is already in the cache, it is
modified, in the variant with automatic allocation, block is loaded
and then modified even if there is a miss. The data is sent to the
main memory at the same time, either directly or via write buffer

m Write back — the data is written to the appropriate cache block, if it
is not in the cache, the block is loaded first. The block is marked by
Dirty bit. Writing to the next level is activated only if the cache
entry needs to be released for replacement of other data or when
sychronization by is requested by the processor, system (cache flush)
is required.

26/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 26 (Processor Writes to Cached Main Memory)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Basic Cache Organization Configurations

We consider a cache of 8 blocks and situation where main memory block

at address/block_size equal to 12 is acessed. Which cache block(s) can be
used for this situation

Fully Associative Direct Mapped 2-Way Associative
Address 12 can be Address 12 can be Address 12 can be
placed arbitrarily placed only in block 4 placed in set 0 (12
(12 mod 8) mod 4)
Block 01234567 Block 01234567 Block 01234567
number number number
Only one set Set 012834567 Sgt Sft S;t S;“’t

27 /49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 27 (Basic Cache Organization Configurations)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Direct Mapped Cache Memory — Mapping of Addresses

00000
00001
00010
00011
00100
00101

Cache - 8 rows (blocks)
row = 1 word

00110
00111

01000
01001
01010
01011
01100
01101

g gindex (local address / set)
RS

01110 10

01111 1 010
01 011

10000 01 100

10001 00 101

10010 10 110

10011 1u 11

10100

10101

10110

10111

cache address:

tag
A/‘/ index
11 101 - memory address as well
for our case

11000
11001
11010
11011
11100
11101
11110
11111

] 28/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 28 (Direct Mapped Cache Memory -- Mapping of Addresses)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Direct Mapped Cache Memory for Block Equal to Word

Capacity — C ... in figure 1024 bytes which is 256 words

Number of sets — SN .. 256 sets (equal to C/WS/BS)

Word size — WS .. 4 bytes for considered example

Block size — BS .. 1 word (4 bytes) for shown example

Number of blocks — BN .. number of blocks (256 there)

Degree of associativity — N number of ways to which capacity or
blocks are divided (1 there)

Address (32 bits)

3 119 - 210 Indoex Valid Tag Data
[[[oo] 1
2l sl 2
Index 3 To CPU
254
255
Tag N\
= Hit
N\

C = 1024 bytes, SN = BN =256,BS=1,N=1

] 29/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 29 (Direct Mapped Cache Memory for Block Equal to Word)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Direct Mapped Cache Memory for Larger Block Size

BS = 4 (16 byte, word WS = 4 byts), number of sets SN = 4
set = (adresa div BS) mod SN

Address Main memory Block

..000010101 : Tag Set Word Byte

..000010100 313020 .. 9 8 7 6 5 4 3 2 10

..000010011 Address| [[o70]
f—

..000010010 n
..000010001
Block —{000010000
aligned 000001111
..000001110
address ..000001101
..000001100
..000001011
..000001010 ‘/BIOCk 0 v
..000001001 -
..000001000 -
..000000111
..000000110
..000000101 Word 0
..000000100 oz
..000000011
..000000010 Byte 0
..000000001 o
Block—{..00000 oo%

aligned “Block 1
address Word Byte

SetV Tag 3 2 0
3

2
1 Block
0

Source: Michal Stepanovsky

] 30/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 30 (Direct Mapped Cache Memory for Larger Block Size)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

General Cache Memory Organization with N Ways

Address log,BS
——t—
Tag Set Word Byte
| [[[o0]
IogZSJ[IogZW+
Way A-1 Way 0
A s A
! V Ta Word W-1 Word 0 X V Ta Word W-1 Word 0
9 4B (4B) 9 @B (4B)
SetS-1
;Z Set
— Set2
Set1 =+ Block
Set0
%j:;
Hit A-1

Source: Michal Stepanovsky

(]

31/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 31 (General Cache Memory Organization with N Ways)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Demonstration: QtRvSim vect-inc, vect-add2, vect-add

Start with direct mapped cache and vect-inc. If the block size is greater
than one word and the vector size is greater than the capacity of one path,
vect-add2 will experience considerable performance degradation. After
increasing the degree of associativity to two ways even while maintaining
the overall capacity, aliasing does not occur anymore. However, after
extending the algorithm to work with three vectors (vect-add), the cache
trashing occur again for write-back or write- through and allocate setup.
The worst situation will occur for the LRU policy. Increasing the degree to
three, or rather to the more usual four, ways will again suppress the
number of misses to one for each sequentially accessed block.
m https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/
master/seminaries/qtrvsim/vect-inc
m https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/
master/seminaries/qtrvsim/vect-add2
m https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/

master/seminaries/qtrvsim/vect-add
32/49

https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-inc
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-inc
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-add2
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-add2
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-add
https://gitlab.fel.cvut.cz/b35apo/stud-support/-/tree/master/seminaries/qtrvsim/vect-add
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 32 (Demonstration: QtRvSim vect-inc, vect-add2, vect-add)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Miss Rate and Cache Organization and Size Relations

0.10 Miss rate versus cache size

and associativity on SPEC92

0.09 benchmark
/ 1-way Hennessy and Patterson:
0.08 Computer Architecture:
2-way A Quantitative Approach 3rd ed.,
0.07 Morgan Kaufmann, 2003
0.06
Miss Rate ey
0.05 - 8-way
per Type
0.04 —
0.03 -
0.02
0.01 — Capacity Compulsory
0.00 1 1 1 1 1 1 Il
T a 8 16 32 64 128 256 512 1024

Cache Size (KB)
m miss rate is not cache parameter/feature
® miss rate is not parameter/feature of the program/algorithm

Miss rate depends on both the algorithms in the program and the cache
parameters and often the data being processed.

] 33/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 33 (Miss Rate and Cache Organization and Size Relations)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Miss Rate Changes with Cache capacity and Block Size

Miss rate versus block size and cache size on SPEC92 benchmark
10%

4K
Miss
5%
Rate
. e — 16k
——064K
A A
0% I 4 4 #4256 K
16 32 64 128 256

Block Size

Source: Hennessy and Patterson: Computer Architecture: A Quantitative Approach 3rd ed., Morgan Kaufmann, 2003
Increasing block size helps to load neighboring data, which would often
subsequently be needed. But if additional cached date are not needed,
then the cache miss penalty increases and at the same time there are more
collisions and cache capacity is wasted for unnecessary data.

o 34/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 34 (Miss Rate Changes with Cache capacity and Block Size)&issue[description]=You can report the issue or sugestion there.

Cache Memory to Speed Up Data Access

Miss Rate Changes with Cache capacity and Block Size

Larger block size
Reduces compulsory misses; increases other misses, miss penalty

Larger cache size
Reduces capacity/conflict misses; increases hit time, power, cost

Greater associativity
Reduces conflict misses; increases hit time, power

Multiple cache levels
Reduces Miss Penalty, allows for optimizations at each level

Prioritize read misses over writes

@ Avoid address translation of cache index

35/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 35 (Miss Rate Changes with Cache capacity and Block Size)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Outline

Virtual Memory and Paging

o 36,49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 36 (Outline)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Process Address Space and Swapping Pages to Disk

Multiple processes, each with its own memory address space. Mutual

Protection and the possibility of expanding the main memory capacity by
secondary storage — swap.

Virtual
address
space
process-A

Virtual
address
space
process-B

Physical memory

Translation by bytes would be expensive, space is divided into (aligned),

typically 4 kB (sometimes larger, e.g. 64 kB), pages.
o 37/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 37 (Process Address Space and Swapping Pages to Disk)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Virtual to Physical Address Translation

The translation is realized by the Memory Management Unit (MMU).
Translation to the pages present in memory is usually done automatically in
hardware after the operating system fills page tables and sets up the Page
Directory Base Register (PDBR) for given process.

On the other hand, page faults are resolved by the operating system code.
If there is access to a virtual memory area mapped into the processes and
actual page is not presnet then the system reads data from the disk,
network, swap partition.

As with the cache, it is necessary and challenging to find space for newly
needed pages (a principle similar to LRU).

Virtual address Physical address
A0-A31 Virtual Physical A0¥A31
Address
CPU translation Memory
D0-D31 MMU D0-D31
t Data t

38/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 38 (Virtual to Physical Address Translation)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Single-level Page Table (MMU)

Offset in page
0

Index into page

31.. table 12 11
‘ 20 bits l 12 bits ‘ Memory divided into
physical page frames
] N
PFN O
PFN 1
4kB
Page table . g
220 entries i Given vir!uaé page iGZBZO
~ 2204B = phylssicrglag;gee Y‘roame PEN 2 physical
4MB No 1 pages
/—/%
PDBR 20 bits to address physical page PFN N-1]
+ additional bits (valid, N=2‘2’2‘2=2;

permissions, etc.) = 4B (8B)

Drawback of the solution, for every, even small, running process on a
32-bit system and for 4 kB pages, it is necessary to allocate 4 MB
(translation of 20-bit address, 4-byte entry for 32-bit physical address)

] 39/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 39 (Single-level Page Table (MMU))&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Two-levels Page Table — 32-bit Intel x86

Page directory Page table level Offset
index index
31.. 22 21 w12 11 .0
[10bnits 10bits | 12 bits

Given process)
Page director PFNO
— PFEN1
\ 21 jitems o } 4kB
=128
>
4cB
— ~ 220
21° Page tables 2 jtems PEN2 physical
= 210.4KB = =214B = 4KB pages
4MB
(if all memory is
paged) 20 bits to determine page + other bits PEN N-1
(valid, rights, etc.) = 4B (8B) N=2%2/212=020
J

Page Directory for each process, but the second level of table with page
etries is allocated only when respective virtual space area is used.

When translated address is divided in 10-bit groups, the array of entries of
both the directory and the table occupies to 4 kB, same as page size.
Higher-order allocations (multiple consecutive pages) are not needed and

Jmemory management is not compicated by fragmentation. w049

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 40 (Two-levels Page Table -- 32-bit Intel x86)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Page Directory Entry (PDE) Bit Fields

31... 1 0

| Can be used by the operating systeml | | | | | | |P=0 |
31... 12 6

| The base address of the Page table | | | A |PCD|PWT| u/s |RNV| P=1|

m bit 0: Present bit — the next level or page is presnet in physical
memory (1). If it is not (0) then data are stored on disk or area is not
mapped. The bit is sometimes denoted as V — valid bit.

m bit 1: Read/Write: 1 — R/W — write is permitted; 0 — read only (RO)

m bit 2: User/Supervisor: 1 — user program access permitted; 0 — only
accessible by operating system

m bit 3: Write-through/Write-back — which method is used for writes

m bit 4: Cache disabled/enabled — important for memory mapped
peripherals, which require immediate (uncached) registers read/write

m bit 5: Accessed — set by MMU when clean and the page is accessed,
used by operating system

o 41/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 41 (\textbf {Page Directory Entry} (PDE) Bit Fields)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Final Page Table Entry (PTE) Bit Fields

31... 1 0

| Can be used by the operating systeml | | | | | | |P=0 |
31... 12 7

| The base address of the Page | .| o | A |pcolpwr| s [rRw|P=1]|

m bit 6: Dirty bit, also Modified sometimes — is set by MMU if page
write into page range was executed from last operating system check
and the flag clear

m The rest of flags and fields have same meaning as for page directory

The Accessed bit is crucial when the operating system searches for
physical memory page frame to be released to allow it reuse for new virtual
page frame. The OS usually counts more comprehensive statistics based
on these bits and zeroes them as it passes through the page frames list. If
Dirty bit is set, then when the physical page (PFN) is released, it is
necessary to sync the data back to the file, swap partition, etc.

o 42 /49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 42 (Final \textbf {Page Table Entry} (PTE) Bit Fields)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Virtual Address Translation for 64-bit CPU Architectures

Virtual Address
Level 4 Index | Level 3 Index | Level 2 Index | Level 1 Index | Offset

Physical Page
I
Physical Address

Level 1 Directory

Level 2 Directory
Level 3 Directory

Level 4 Directory

Level 1 Entry —»
Level 2 Entry — —

Level 3 Entry ~—

“» Level 4Entry —»

It requires multiple levels. For 64-bits and 4 kB pages, it is theoretically
necessary to translate 52-bits. If the individual parts of the tables are sized
to fit exactly into one page and entries are 8 bytes (64 bits) each, then the
translation processes 9 bits (512 x 8 = 4096) per level and thus

ceil(52/9) = 6. Often, however, one to two levels are omitted, see more
later.

o 43/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 43 (Virtual Address Translation for 64-bit CPU Architectures)&issue[description]=You can report the issue or sugestion there.

Virtual Memory and Paging

Speed Up (Caching) of Repeated Translation

Each translation represents several accesses to memory, and although it is
accelerated by cache memory, it slows down operations. The Translation
Look-Aside Buffer (TLB) is being utilized. It works on the same principle
as the memory cache, but stores a virtual address with its translation to a
physical one. Again, limited capacity, LRU, and the it needs to be taken
into account when programming.

hit

CPU (ALU) (———— Cache

virtual address virtual address miss

page offset
. q tag
transfer y physical

hit Page table address

into TLB

44 /49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 44 (Speed Up (Caching) of Repeated Translation)&issue[description]=You can report the issue or sugestion there.

Cache Memory and Paging Together

Outline

Cache Memory and Paging Together

o 45/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 45 (Outline)&issue[description]=You can report the issue or sugestion there.

Cache Memory and Paging Together

Memory Subsystem on Real Chip - Intel Nehalem

4 cycles latency

Front-End
Insti on
Pipeline

Out-of-Orde
Execution
Engine

Insir TLBy 4-way Insir TLBy Memory

4KiB pages large pages
64 entries / thread 7 entries/ thread Controller

L1 Instruction Cache, 32kiB
4-way associative e

Integrated

128lcore Tully-associative

FeiGarhe S5okE L3 Cache, BMiB
B-way associative -
16-way associative

Memory Order-Butfer (MOB)
48 load buffers
32 store buffers
10 fill buffers

64B block size 64B block size
Shared

L1 Data Cache 32kiB,
8-way set asspciative
648 block size

Core Domain

Un-Core Domain .

i

46 /49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 46 (Memory Subsystem on Real Chip - Intel Nehalem)&issue[description]=You can report the issue or sugestion there.

Cache Memory and Paging Together

Paging on 64-bit Processor Architectures

The full 64-bit length of the physical address is not (yet) in use. Neither is
the 64-bit virtual address. Translation levels slow down the execution. The
highest address bits are replaced by the sign extension. The top virtual
memory range area is reserved for the operating system, the the bottom

for applications. Further optimization of the optional larger page — huge
pages.

Canonical "higher half"

Canonical
FFFF8000 00000000

"higher half" .
S Higher half
FF800000 00000000

Noncanonical
addresses

Noncanonical
addresses

007FFFFF_FFFFFFFF

00007FFF FFFFFFFF

00000000 00000000 00000000 00000000

00000000 00000000
48-bit address 56-bit address 64-bit address
© 4 levels 5 levels 6 levels (not used)

47/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 47 (Paging on 64-bit Processor Architectures)&issue[description]=You can report the issue or sugestion there.

Cache Memory and Paging Together

Literature and Online Resources
| |
| |
| |
| |
| |

o 48 /49

Ulrich Drepper: What every programmer should know about memory
Agner Fog: Software optimization resources. C++ and assembly
https://www.7-cpu.com/cpu/Haswell.html
https://www.7-cpu.com/cpu/Skylake.html

WikiChips: Zen - Microarchitectures - AMD

https://lwn.net/Articles/250967/
https://www.agner.org/optimize/
https://www.7-cpu.com/cpu/Haswell.html
https://www.7-cpu.com/cpu/Skylake.html
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 48 (Literature and Online Resources)&issue[description]=You can report the issue or sugestion there.

Cache Memory and Paging Together

Left Empty for Notes

o 49/49

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture04-memory-en, slide 49 (Left Empty for Notes)&issue[description]=You can report the issue or sugestion there.

	Memory – Introduction
	Semiconductor Memories – HW Realization
	Cache Memory to Speed Up Data Access
	Virtual Memory and Paging
	Cache Memory and Paging Together

