
1B35APO Computer Architectures

Computer Architectures

Multi-level computer organization, virtual machines

Ver.1.50

Czech Technical University in Prague, Faculty of Electrical Engineering

2B35APO Computer Architectures

Multi-level computer organization

Machine code (language) - executed directly by CPU, instruction set
 – level L1 – alphabet {0,1} , hard for humans, architecture specific

 Higher-level languages – more user/programmer friendly, L2 + more

L2 program execution on machine supporting L1 language
Compilation - L2 instructions are replaced by sequences of L1 instructions
Interpretation – program codded in L1 performs according L2 accessed as
data (slower)

Virtual machine
concept
We declare virtual
computer Mi for level i
which executes
language Li.

Program written in
language Li is
interpreted or translated
for Mi-1 computer, etc.

Virtual machine M3
Language/code L3

Virtual machine M2
Language/code L2

Virtual machine M1
Language/code L1

L1 PROGRAM is directly
executed by computer
hardware

L2 PRG. is interpreted by
program running on M1 system
or compiled to L1 language

L3 PRG. is interpreted by
program running on M2 or M1
system or compiled to L2 or L1

3B35APO Computer Architectures

Todays multi level machine architecture

Machine levels evolution
• the first computers –
machine code only – 1
level in the stack

• 50-ties - Wilkes –
microcode – 2 levels

• 60- ties – OS – 3 levels
• compilers, prog.
languages – 4 levels

• user oriented
applications - 5 levels

• HW and SW are logically
equivalent (can be
mutually substituted)

• competition and
convergence of RISC
and CISC CPU
architectures and
implementations

Problem oriented
language

Symbolic machine code
 ABI level, assembler

Operating system level
with system-calls

Bare metal (CPU)
machine code

Microcode level
(not used on RISCs)

user
programs

OS
support

and
libraries

compilation

compilation

(compiler)

(compiler)

(operating
system)

(microcode)

(compiler)

partial interpret

interpretation

direct execution
by hardware

symbolic
languages

low level
machine

code

Level 5
L5 – higher level
language

Level 4
L4 – assembler
(symbolic addresses)

Level 3
L3 – machine code
 + virtual instructions

Level 2
L2 – CPU instruction

set

Level 1
L1 – micro-
inststructions

4B35APO Computer Architectures

Processes and their states

PROCESS – executed program (program – passive as data, process - active)
PROCESS STATE - information enough to continue previously frozen process
 1. program 3. variables values, data, registers
 2. instruction pointer 4. state and position for all I/O

ASUMPTION: process P does not modify its own program!
STATE VECTOR – variable components of process state – modified by HW or
program

 PROCESS = PROGRAM + STATE VECTOR
STATE VECTOR UPDATE – st. vector P2 is changes by P1 -> P1 is interpreter of

P2 program

M1

prog 1
code

state
vec. 1

μ prog. level

M2

prog 2
code

state
vec. 2

instruction set
architecture level

M3

prog 3
code

state
vec. 3

operation system
level

computer
hardware

reads and executes P1
instruction and modifies
state vector 1

reads and executes P2
and modifies SV2

reads and executes P3
and modifies SV3

5B35APO Computer Architectures

Machine Code – Instruction Set Architecture (M2)

Defined by instruction set (usually referred as processor architecture)
 ISA – Instruction Set Architecture  Microarchitekture (implementation)

HW - structure of computer, CPU, I/O, buses, memory organization,
hardware latches, buffers, registers, clocks
SW - instruction set, data formats, addressing methods, CPU registers

Instruction format

- one or more fields, (one or more
continuous words)
- addr. fields contains address
 or specify register(s) (indirect)

Most commonly used CISC
formats have two operands,
RISC usually provide three
operands but only register
ones

OPCODE

instruction without
address/operand or
with implicit one

single operand/address
instruction

double operand/address
instruction

triple operand/address
instruction

ADDRESS

OPCODE

OPCODE ADDR1

OPCODE AD3
(dst)

ADDR2

AD2
(src2)

AD1
(src1)

OPCODE SOURCE
MODE

SOURCE
REG

DEST
MODE

DEST
REG

Extension word 1 – address or immediate data

P

P+1

P+2Extension word 2 – address or immediate data

SOURCE OPERAND DESTINATION OPERAND

6B35APO Computer Architectures

Intel Core 2 Architecture (Mikr architecture) (M1)
128 Entry
 ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

Instruction
Fetch Unit

18 Entry Instruction Queue

7+ Entry µop Buffer

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB)
Retirement Register File
(Program Visible State)

Shared
Bus
Interface
Unit

Shared
L2
Cache
(16 way)

256 Entry
L2 DTLB

Micro-
code

Complex
Decoder

Simple
Decoder

Simple
Decoder

Simple
Decoder

32 Entry Reservation Station

ALU ALU
SSE
Shuffle
ALU

SSE
Shuffle
MUL

ALU
Branch

SSE
ALU

128 Bit
FMUL
FDIV

128 Bit
FADD

Store
Address

Store
Data

Load
Address

Memory Ordering Buffer
(MOB)

32 KB Dual Ported Data Cache
(8 way)

16 Entry
DTLB

Port 0 Port 1 Port 2Port 3 Port 4Port 5

Internal Results Bus
LoadStore128 Bit

128 Bit

4 µops

4 µops

4 µops

4 µops 1 µop 1 µop 1 µop

128 Bit

6 Instructions

4 µops

256 Bit

7B35APO Computer Architectures

Requirements for Good Programmer

Every programmer should be able to write a code that meets the following
criteria:
● Efficient CPU utilization, ie. Fast code
● Efficient use of memory, ie. Use only such data types/structures that

suffice for programmer purpose while consuming minimum/reasonable
amount of memory space

● Follow laid down rules and convention, ie. Format source code for better
reading and understanding (spaces, indentation, comments …)

● Made future modifications and improvement of code easy (using
functions or OOP according to the environment and programmer skills)

● Solid and well-testable code, ie. Detect and correct possible errors (most
critical and common are errors, which we do not expect that can occur)

● Documentation (instructions for using the program and future extension)

Loosely paraphrased/based on Randall Hyde book Write Great Code -
Volume 2: Thinking Low-Level, Writing High-Level

8B35APO Computer Architectures

⇒ my suggestions for x86 and other CPU architectures
● for x86 – read and understand Agner Fog's CPU reviews and optimization manuals

http://www.agner.org/optimize/
● The microarchitecture of Intel, AMD and VIA CPUs
● An optimization guide for x86 platforms

● the great overview of CPU evolution and methods to speed up instructions execution
● John Bayko: Great Microprocessors of the Past and Present

● understand how higher level languages and runtime environments translate language
constructs to underlaying data types, memory allocations and access pattern and use that as
base to decide which data types select for given case

● study compiler properties and options and write benchmarks/tests and develop your “sense” for
approximation about efficiency, price and memory demands of possible program constructs

● at the end you often find that many attempts to optimize code without additional knowledge and
long term experience your clumsy optimization attempts can lead to slower code that code
generated by compiler unconstrained ⇒ but if the performance is really a priority, application is
demanding the there is only way to study and learn where initial knowledge is not sufficient,
where to trust compiler, where it is necessary to help it (inline assembly, vektorization SSE etc.)
or extend it

● all above effort is useless and waste of time if original algorithm or concept is wrongly selected
● see the example what are the ways to concatenate two bytes to form 16-bit word

http://www.agner.org/optimize/

9B35APO Computer Architectures

Virtualization

● Virtualization hides the implementation/properties of lower layers
(reality) and provides an environment with desired properties

● Virtualization can be divided to following techniques in computer
technology
● Purely application / language level and compiled code (byte-code) - virtual

machines, for example. JVM, dotNET
● Emulation and simulation typically different computer architecture (also

called cross-virtualization)
● Native virtualization - an isolated environment that provides the same type

of architecture for the unmodified OS
● Virtualization with full support in the HW

● Partial virtualization - typically only address spaces
● Paravirtualization - the operating system has to modified/extended to run

in provided environment
● OS-level virtualization - only separated user environments (jails,

containers, etc.)

10B35APO Computer Architectures

OS Level Virtualization
Mechanism Operating system License Available File system

isolation
Copy on

Write Disk quotas

chroot
most UNIX-like
operating systems

varies by
operating
system

1982 Partial[5] No

Docker Linux [6] Apache License
2.0 2013 Yes Yes Not directly

Linux-VServer
(security context) Linux GNU GPLv2 2001 Yes Yes

lmctfy Linux Apache License
2.0 2013 Yes Yes

LXC Linux GNU GPLv2 2008 Yes[10] Partial. Yes
with Btrfs.

Partial. Yes with
LVM

OpenVZ Linux GNU GPLv2 2005 Yes No
Virtuozzo Linux, Windows Proprietary July 2000[14] Yes Yes

Solaris Containers
(Zones)

Solaris,
OpenSolaris,
Illumos

CDDL February 2004 Yes Yes (ZFS)

FreeBSD jail FreeBSD BSD License 2000[20] Yes Yes (ZFS)

sysjail OpenBSD, NetBSD BSD License Last March 3,
2009

Yes No

WPARs AIX Proprietary 2007 Yes No
HP-UX Containers
(SRP) HPUX Proprietary 2007 Yes No

Partial. Yes with
logical volumes

iCore Virtual
Accounts Windows XP

Proprietary/Free
ware 2008 Yes No

Source: http://en.wikipedia.org/wiki/Operating-system-level_virtualization

11B35APO Computer Architectures

Full Computer System Virtualization

● Host system (often called domain DOM 0)
● Guest system
● Processor model implementation for guest system

● for native cases – common code unprivileged instructions executed directly
on the host CPU, privileged cause exception

● for cross case – instructions are interpreted by emulator (probram in DOM 0),
optionally accelerators and JIT techniques are used

● Attempt to execute privileged instructions in guest system
● causes exception which is serviced by monitor/hypervisor by emulation effect

on state vector guest system CPU or memory mapping
● if CPU includes support for HW virtualization (AMD-V, Intel VT-x) then

hardware can take care of such case, shadow pagetables atec.
● Peripherals/I/O devices

● IO and memory mapped peripherals access attempt leads to exception and
hypervisor emulates function and keeps state of such subsystems

● guest system is adapted to pass I/O request (send packet, read disk block)
directly in format which is understand by hypervisor (device drivers direcly
supporting given hypervisor etc.)

12B35APO Computer Architectures

Hypervisor

● takes care to start and stop domains
● monitors their state end services exceptions – emulated effect of

priviledged instructions
● divides/allocates memory and CPU time for individul guest systems
● emulates operations of peripheral devices and forwards data to/from

device drivers API of physical devices and networks on host system
level

● it can be implemented
● in userspace of host system as unprivileged application (QEMU)
● with HW support in host CPU and operating system (KVM)
● as and independent system/microkernel which uses one other system

in specialized domain (DOM 0) for communication with physical
devices by providing direct HW access and transports data from this
DOM 0 system to other (user DOM U) domains (XEN)

13B35APO Computer Architectures

Paravirtualized system calls (XEN)

Ring 0

Ring 1

Ring 2

Ring 3

Native Paravirtualized

Kernel

Application Application

Kernel

Hypervisor

Hypercall

System Call

Accelerated System Call

14B35APO Computer Architectures

Use of privilege levels (rings) on paravirtualized X86 OS

3 2 1 0 3 2 1 0

Native Paravirtualized

Hypervisor Kernel Applications Unused

15B35APO Computer Architectures

Use of privilege levels (rings) for AMD64/EMT64

3 0 3

Native Paravirtualized

Hypervisor Kernel Applications Unused

0

16B35APO Computer Architectures

Packet Path from Unprivileged Domain

Domain U Guest

Hardware

Domain 0 Guest

Xen

TCP/IP Stack

Split Device Driver

Shared Memory
Segment

Split Device Driver Real Device Driver

Physical Device

Application

TCP/IP Stack
(Routing / Bridging)

17B35APO Computer Architectures

Peripheral architecture in Xen environment

Xen Virtual CPU Virtual
Memory Scheduling

Domain 0 Guest Domain U Guest

Hardware Physical
CPU

Physical
Memory Network Block

Devices

Device
Drivers

Xen Control User Interface

Split Device
Drivers

Split Device
Drivers

Applications

18B35APO Computer Architectures

Xen – Unmodified Guest OS (HVM)

Xen Virtual CPU Virtual
Memory Scheduling

Domain 0 Guest

Hardware Physical
CPU

Physical
Memory Network Block

Devices

Device
Drivers

Xen Control
User Interface

Split
Device
Drivers

HVM Guest

Legacy
Applications

Domain U
Guest

Applications

Isolated Driver Domain

Split
Device
Drivers

Split
Device
Drivers

Device
Drivers

Device
Driver

Emulated Devices

19B35APO Computer Architectures

Xen – Fully paravirtualized/adapted Guest OS

Xen Virtual CPU Virtual
Memory Scheduling

Domain 0 Guest

Hardware Physical
CPU

Physical
Memory Network

Device
Drivers

Xen Control
User Interface

Split
Device
Drivers

To NFS Server

Domain U
Guest

Applications

Split
Device
Drivers

NFS
Client

Domain U
Guest

Applications

Split
Device
Drivers

NFS
Client

Domain U
Guest

Applications

Split
Device
Drivers

NFS
Client

...

20B35APO Computer Architectures

Xen API Hierarchy

xm

libxen (C)

xend d mon￦

Kernel

Hypervisor

Language

XML-RPC

/dev/xen*

Hypercalls

libvirt
Xen-CIM

Xen-CIM

pyxen Other
bindings

Other
tools

21B35APO Computer Architectures

QEMU, GNU/Linux and more

● Good source of infomations about GNU/Linuxu porting,
writing drivers and portabel applications are tutorial texts
and presentation at Free Electrons server
http://free-electrons.com/docs/
● i.e. next resource specially for virtualization

– Thomas Petazzoni / Michael Opdenacker:
Virtualization in Linux

http://free-electrons.com/docs/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

