
MicroZed APO
This page contains a detailed description of hardware and peripherals ready for exercises and semester
assignments. For instructions on how to connect to the product, see the MicroZed APO Help page .

Description of the hardware of the used MicroZed processor board

 MICROZED EVALUATION KIT
 ADSAES-Z7MB-7Z010-G
 Xylinx Zynq 7Z010

 Base Chip: Xilinx Zynq-7000 All Programmable SoC
 Type: Z-7010, part XC7Z010
 CPU: Dual ARM Cortex ™ -A9 MPCore ™ @ 866 (NEON ™ & Single/Double Precision

Floating Point)
 2x L1 32 kB data + 32 kB instruction, L2 512 KB
 FPGA: 28K Logic Cells (~ 430K ASIC logic gates, 35 kbit)
 Computing units in FPGAs: 100 GMACs
 FPGA memory: 240 KB
 Memory on MicroZed board: 1GB
 Operating system: GNU/Linux
 GNU LIBC (libc6) 2.19-18 + deb8u7

 Linux kernel 4.9.9-rt6-00002-ge6c7d1c
 Distribution: Debian Jessie

 More information at http://microzed.org/product/microzed

Interfaces accessible directly on MicroZed board

 1G ETHERNET,
 USB Host, A connector
 serial port UART1 via converter to USB, USB micro-B
 micro SD card
 on the board is Flash, one user LED, user

button and reset button

Description of the MZ_APO development kit interface

The following peripherals are served in the logical design on the training module

 small parallel LCD display, so far access only via command and data register
 in FPGA it is possible to implement automaton for display from framebuffer

 32 LEDs for displaying 32-bit words (connection to FPGA via SPI)
 two RGB LEDs (SPI connection)

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://cw.fel.cvut.cz/wiki/courses/b35apo/documentation/mz_apo-howto/start
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=http://microzed.org/product/microzed

 three rotary control inputs () with output phase-shifted signals and a push-on contact (connection
via SPI)

 four outputs for modeling servos, signal and power supply
 audio input to the converter in Zynqu, which has an interface to the ARM part, but it can be

connected via bus to FPGA Programmable Logic. The board is equipped with a small
microphone, when connecting an external to 3.5 mm red JACK, it switches to an external input,
the jumper can be set from amplified to the classic 1V line standard

 audio output, only PWM directly from FPGA PL, but with appropriate modulation, the melody
can be played. There is a small speaker on the board with the possibility of switching to
headphones after connecting to the JACK (mono output only)

 2x PMOD connector, it is a de-facto standard for connecting slow (max. Tens) peripherals to
FPGA, each has 8 FPGA PL signals, + 3.3V power supply plus pins for + 5V power supply, with
+ 5V can be disconnected by jumper. In the event of a short circuit to 3.3 logic signals, there is a
risk of destruction. The PMOD connector standard, which uses a female on the FPGA side, is not
directly used. The reason is the possibility of easy connection to flat cable. With a short
connector it is possible to arrange a reduction directly to interfaces compatible with available
PMOD peripherals.

 1x 40 pin connector with 36 FPGA 3.3V signals. It corresponds to the signal distribution on the
Altera DE2 boards. Some of the signals are routed with respect to usability for fast LVDS
connections. The other half is shared with the PMOD outputs. The output is + 3.3V and + 5V
connected by a number.

 2x interface for connecting 10-bit parallel cameras.
 two channels for CAN bus connection, drivers up to 5 MBd connection via FPGA PL either to

integrated controllers or to controllers in FPGA, these could be implemented in a project with
CAN-FD support

 power supply for 5.5 mm JACK from 12 to 24 VDC.
 the USB B connector is connected to an FTDI chip that provides access to the serial console

routed to the ZARTQ UART0 circuit. The actual signals of the Zynq circuit and the power supply
of the kit are galvanically separated from the connector and the USB signals. With the choice of
console settings on the MIO10 and MIO11 pins, a custom version of the U-Boot bootloader has
been modified and compiled . The kernel of the Linux operating system was compiled to
measure.

 when using UART0 via FTDI, it is possible to reset the board with a break signal applied for
more than 1 second.

 2-pin connector for external reset, such as a relay when used for remote access and application
debugging

 hardware design Ing. Petr Porazil at PiKRON sro

The complete mechanical design and electronics design of the kit is available in the GIT repository
https://gitlab.com/pikron/projects/mz_apo/microzed_apo

To view and edit mechanical design, you need to install FreeCAD https://freecadweb.org/

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://freecadweb.org/
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.com/pikron/projects/mz_apo/microzed_apo
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://cw.fel.cvut.cz/wiki/lib/exe/fetch.php%3Ftok%3Ddb61e7%26media%3Dhttp%253A%252F%252Fwww.denx.de%252Fwiki%252FU-Boot

For display and editing of diagrams and printed circuit, then the design system Ing. Peter Porazil -
PEDA https://sourceforge.net/projects/peda/

Table of base addresses of individual peripherals

Physical
address

Range Symbolic designation Description

0x43c40000 0x4000
SPILED_REG_BASE_PHY
S

Block of peripherals, rotary selectors, matrix
keyboards and RGB LEDs

0x43c00000 0x4000
PARLCD_REG_BASE_PH
YS

Parallel LCD display

0x43c50000 0x4000
SERVOPS2_REG_BASE_P
HYS

Control of up to four model servos, alternatively
PS2

0x43c60000 0x4000
AUDIOPWM_REG_BASE_
PHYS

Simple audio output (so far only PWM)

0x43c20000 0x4000
DCSPDRV_REG_BASE_P
HYS_0

Peripherals for driving the first DC motor

0x43c30000 0x4000
DCSPDRV_REG_BASE_P
HYS_1

Peripherals for controlling a second DC motor

Block of rotary selectors, matrix keyboards and RGB LEDs

The register set starts at the physical address SPILED_REG_BASE_PHYS

Register
offset

Symbolic designation Bits Description

0x004 SPILED_REG_LED_LINE_o 31 .. 0
A row of 32 yellow LEDs mapped directly
to memory

0x010 SPILED_REG_LED_RGB1_o 23 .. 0
Writing RGB values to PWM registers for
RGB LEDs 1

 23 .. 16Red component R
 15 .. 8 Green component G
 7 .. 0 Blue component B

0x014 SPILED_REG_LED_RGB2_o 23 .. 0
Write RGB values to PWM registers for
RGB LED 2

 23 .. 16Red component R
 15 .. 8 Green component G
 7 .. 0 Blue component B

0x018
SPILED_REG_LED_KBDWR_DIR
ECT_o

31 .. 0
Direct write to LED and keyboard
output/scan

 2 .. 0
Direct output (or) to R, G and B RGB
LEDs 1

 5 .. 3
Direct output (or) to R, G and B RGB
LEDs 2

 6 Separate status LED
 7 Separate status LED
 11 .. 8 Keyboard Series Selection

0x020
SPILED_REG_KBDRD_KNOBS_D
IRECT_o

31 .. 0 Keyboard and rotary selector feedback

 3 .. 0 Keyboard feedback
 16 Unfiltered state of channel A of blue

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://sourceforge.net/projects/peda/

Register
offset

Symbolic designation Bits Description

selector B
 17 Blue B selector channel B unfiltered state
 18 Blue selector button B status not filtered

 19 Dec
Green state of G selector channel A
unfiltered

20
May

Unfiltered state of channel B of green
selector G

 21 Green state of G selector button unfiltered

 22nd
Filter state A of the red selector R is
unfiltered

 23
Unfiltered state of channel B of red selector
R

 24
Unfiltered status of the red selector button
R

0x024 SPILED_REG_KNOBS_8BIT_o 31 .. 0 Filtered selector values as 8 bit numbers
 7 .. 0 Relative rotation of the blue selector B
 15 .. 8 Relative rotation of the green G dial
 23 .. 16Relative rotation of the red dial R
 24 Filtered Blue Dial B Value
 25 Filtered value of the green selector button G
 26 Filtered value of the red selector R
Additional information for those interested in custom peripheral design for integrated gate array
processor

The peripheral implementation is located in /system/ip/spi_leds_and_enc_1.0/hdl . Because LEDs and
rotary selectors are slow peripherals and the number of pins usable for more interesting and faster
interfaces such as cameras is large, GPIO expanders connected in series (SPI bus) are used to transfer
input and output signals to and from slow peripherals. A sequence of 48 bits is transmitted in both
directions. The transfer of the old instance spi_leds_and_enc_v1_0_spi_fsm_inst components
spi_leds_and_enc_v1_0_spi_fsm . The component spi_leds_and_enc_v1_0_S00_AXI then takes care
of the implementation of the set of registers connected to the CPU by the AXI bus . The referenced
section at the end of the source code clearly shows how the individual logic signals and their groups are
mapped to bits and bit fields in the individual registers of the AXI peripherals.

Parallel LCD display

The register set starts at the physical address PARLCD_REG_BASE_PHYS

Register
offset

Symbolic designation Bits Description

0x000 PARLCD_REG_CR_o 31 .. 0 Peripheral control register
 1 Generating a reset signal for the display

0x008
PARLCD_REG_CMD_
o

7 .. 0 Generate control cycle/write command to LCD controller

0x00C
PARLCD_REG_DATA
_o

15 .. 0
Generate 16-bit data cycle/command write to LCD
controller

0x00C PARLCD_REG_DATA 31 .. 0 Generating two data cycles for the controller (15 .. 0) and

https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/blob/microzed_apo/system/ip/spi_leds_and_enc_1.0/hdl/spi_leds_and_enc_v1_0_S00_AXI.vhd#L550
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/blob/microzed_apo/system/ip/spi_leds_and_enc_1.0/hdl/spi_leds_and_enc_v1_0_spi_fsm.vhd
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/blob/microzed_apo/system/ip/spi_leds_and_enc_1.0/hdl/spi_leds_and_enc_v1_0.vhd#L263
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/tree/microzed_apo/system/ip/spi_leds_and_enc_1.0/hdl

Register
offset

Symbolic designation Bits Description

_o (31 .. 16)
The peripheral implementation is located in the /system/ip/display_16bit_cmd_data_bus_1.0/hdl
directory .

Output to model servos or for PS2 keyboard/mouse

The register set starts at the physical address SERVOPS2_REG_BASE_PHYS

Register
offset

Symbolic designation Bits Description

0x000 SERVOPS2_REG_CR_o 31 .. 0 Peripheral control register and direct control
 0 Setting the idle value (H/L) for LED/SERVO1
 1 Idle value setting (H/L) for LED/SERVO2
 2 Setting the idle value (H/L) for LED/SERVO3
 overlaps with PS2 Clock
 3 Idle value setting (H/L) for LED/SERVO4
 overlaps with PS2 Data, the third state by default

 8
signal direction control SERVO4/PS DATA, 0 .. in,
1 .. out

0x00C
SERVOPS2_REG_PWMPE
R_o

23 .. 0 PWM cycle period in step 10 ns

0x010 SERVOPS2_REG_PWM1_o 23 .. 0 Filling the PWM signal SERVO1 in step 10
0x014 SERVOPS2_REG_PWM2_o 23 .. 0 Filling the PWM signal SERVO2 in step 10
0x018 SERVOPS2_REG_PWM3_o 23 .. 0 Filling the PWM signal SERVO3 in step 10
0x01C SERVOPS2_REG_PWM4_o 23 .. 0 Filling the PWM signal SERVO4 in step 10
The peripheral implementation is located in the /system/ip/servo_led_ps2_1.0/hdl directory .

PWM audio output

The register set starts at the physical address AUDIOPWM_REG_BASE_PHYS

Register offset Symbolic designation Bits Description
0x000 AUDIOPWM_REG_CR_o 31 .. 0 Peripheral control register
0x008 AUDIOPWM_REG_PWMPER_o 23 .. 0 PWM cycle period in step 10 ns
0x00C AUDIOPWM_REG_PWM_o 23 .. 0 Filling the PWM signal in step 10
The peripheral implementation is located in the /system/ip/audio_single_pwm_1.0/hdl directory .

Peripherals for DC motor control

This peripheral was originally designed for the subject Programming Real-Time Systems (B3M35PSR,
B4B35PSR). It is optionally included in the FPGA design for the subject Computer Architecture.

The peripheral design is included twice. One for the power stage and position reading to the PMOD1
connector, for which the registers are mapped from DCSPDRV_REG_BASE_PHYS_0, and the second
for the motor connected through the PMOD2 connector, the DCSPDRV_REG_BASE_PHYS_1
address is based.

Register
offset

Symbolic designation Bits Description

0x0000 DCSPDRV_REG_CR_o 31 .. 0Peripheral control register

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/tree/microzed_apo/system/ip/audio_single_pwm_1.0/hdl
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/tree/microzed_apo/system/ip/servo_led_ps2_1.0/hdl
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/tree/microzed_apo/system/ip/display_16bit_cmd_data_bus_1.0/hdl

Register
offset

Symbolic designation Bits Description

 4 Direct PWMA output control
 5 Direct PWMB output control
 6 Enable PWM output by fill and period
 8 Reset reading position in
0x0004 DCSPDRV_REG_SR_o 31 .. 0Peripheral status register
 8 Logic level on the IRCA pin
 9 Logic level on the IRCB pin
 10 Logic level on the IRQ pin

0x0008
DCSPDRV_REG_PERIO
D_o

31 .. 0PWM Period Setting After 10 ns (100)

 29 .. 0PWM length setting (suitable 50000, 20 kHz)

0x000C
DCSPDRV_REG_DUTY
_o

31 .. 0Regist to set the required level of PWM performance

 29 .. 0
Mask of implemented bits, setting of pulse length/filling
in the period

 30 Voltage direction applied to the motor, 10 ns unit
 31 Voltage selection for the opposite direction of rotation

0x0010 DCSPDRV_REG__o 31 .. 0
Calculated number of increments/position/motor
rotation

The peripheral implementation can be found in /system/ip/dcsimpledrv_1.0/hdl .

Other peripherals

User button on the processor module

The button is connected to the PS_MIO51_501 SoC Zynq pin. On the Linux kernel, offset 906 is set for
MIO.

To access the user button, you need to access the GPIO pin 957 (= 906 + 51).

echo 957>/sys/class/gpio/export
cat /sys/class/gpio/gpio957/value

User LED on the processor module

The LED is connected to pin PS_MIO47_501 SoC Zynq. On the Linux kernel, offset 906 is set for
MIO.

It is therefore necessary to access GPIO pin 953 to access the user LED.

echo 953> /sys/class/gpio/export
echo out>/sys/class/gpio/gpio953/direction
echo 1>/sys/class/gpio/gpio953/value

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/dcsimpledrv_1.0/hdl

Links

 GNU/Linux and FPGA in Real-time Control Applications , Installfest 2017 lecture . Presentation
in PDF format .

 Use of MZ_APO boards for distributed motor control using CAN industrial bus . Video from the
Linux Days 2017 conference . Presentation in PDF format

 Programming notes SoC Zynq .
 GIT repository with Linux kernel configuration and U-boot loader with modifications for

MZ_APO kits
 Martin Jeřábek - diploma thesis Open-source and Open-hardware CAN FD Protocol Support

https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://dspace.cvut.cz/bitstream/handle/10467/80366/F3-DP-2019-Jerabek-Martin-Jerabek-thesis-2019-canfd.pdf
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=http://www.denx.de/wiki/U-Boot/WebHome
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://www.kernel.org/
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://github.com/ppisa/zynq-rt-utils-and-builds
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://rtime.felk.cvut.cz/hw/index.php/Zynq
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://www.linuxdays.cz/2017/video/Pavel_Pisa-CAN_canopen.pdf
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://www.linuxdays.cz/2017/index.html
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://www.youtube.com/watch%3Fv%3DhYC-XznyOlQ
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://en.wikipedia.org/wiki/CAN_bus
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://installfest.cz/if17/
https://translate.google.com/translate?hl=en&prev=_t&sl=cs&tl=en&u=https://www.youtube.com/watch%3Fv%3DsNtlEysC0yA

	MicroZed APO
	Description of the hardware of the used MicroZed processor board
	Description of the MZ_APO development kit interface
	Table of base addresses of individual peripherals
	Block of rotary selectors, matrix keyboards and RGB LEDs
	Parallel LCD display
	Output to model servos or for PS2 keyboard/mouse
	PWM audio output
	Peripherals for DC motor control

	Other peripherals
	User button on the processor module
	User LED on the processor module

	Links

