
Introduction to C Programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 01

B3B36PRG – Programming in C

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 1 / 65

Overview of the Lecture

■ Part 1 – Course Organization

Course Organization

Course Goals and Means of Achieving the Course Goals

■ Part 2 – Introduction to C Programming

Program in C

Values and Variables

Standard Input/Output
K. N. King: chapters 1, 2, and 3

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 2 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Part I

Part 1 – Course Organization

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 3 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Course and Lecturer

B3B36PRG – Programming in C

■ Course web page https://cw.fel.cvut.cz/wiki/courses/b3b36prg
■ Submission of the homeworks – BRUTE Upload System

https://cw.felk.cvut.cz/brute and individually during the labs.

■ Lecturer:

■ prof. Ing. Jan Faigl, Ph.D.

■ Department of Computer Science – http://cs.fel.cvut.cz
■ Artificial Intelligence Center (AIC) http://aic.fel.cvut.cz
■ Center for Robotics and Autonomous Systems (CRAS) http://robotics.fel.cvut.cz
■ Computational Robotics Laboratory (ComRob) http://comrob.fel.cvut.cz

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 5 / 65

https://cw.fel.cvut.cz/wiki/courses/b3b36prg
https://cw.felk.cvut.cz/brute
http://cs.fel.cvut.cz
http://aic.fel.cvut.cz
http://robotics.fel.cvut.cz
http://comrob.fel.cvut.cz

Course Organization Course Goals and Means of Achieving the Course Goals

Course Organization
■ B3B36PRG – Programming in C; Completion: Z,ZK; Credits: 6

Z – ungraded assessment, ZK – exam
1 ECTS credit is about 25–30 hours per semester, six credits is about 180 hours per semester

■ Contact part (lecture and labs): 3 hours per week, i.e., 42 hours in the total
■ Exam including preparation: 10 hours
■ Home preparation (first book reading and followed by homeworks) approx 9 hours per week Median load

■ Ongoing work during the semester
■ Homeworks mandatory, optional, and bonus parts
■ Semestral project – multi-thread computational applications.

■ Exam test and implementation exam – verification of the acquired knowledge and skills from
the teaching part of the semester. An independent work with the computer in the lab (class room).

■ Attendance to labs, submission of homeworks, and semestral project.
■ Consultation - If you do not know, or spent too much time with the homework, consult with

the instructor/lecturer.
■ Maximize the contact time during labs and lectures, ask questions, and discuss.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 6 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Course Evaluation

Point Source Maximum Required Minimum
Points Points

Assignment 25 All assignments must be turned in.
 25Bonus Assignment 10 -

Labs (MCU) 6 -

Semester project 30 10

Exam test 20 †10
Implementation exam 20 10

Total 111 55
†If you fail the implementation and score exam test for 13 or more points, the following exam term is
only for the implementation, and vice versa, if you do not ask otherwise.
55 points is solid E, not borderline, but solid. The exam test (and implementation) is not corrected but
evaluated, the scoring is upper bound, i.e., it might contain less points than evaluated.

■ The course can be passed with ungraded assessment and exam.
■ All homeworks must be submitted and they have to pass the mandatory assessment.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 7 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Resources and Literature

■ Textbook
„C Programming: A Modern Approach“ (King, 2008)

C Programming: A Modern Approach, 2nd Edition, K. N. King,
W. W. Norton & Company, 2008, ISBN 860-1406428577

The main course textbook

■ During the first weeks, take your time and read the book!
The first homework deadline is 16.03.2024!

■ Lectures – support for the textbook, slides, comments, and your notes.
Demonstration source codes are provided as a part of the lecture materials!

■ Laboratory exercises – gain practical skills by doing homeworks (yourself).

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 8 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Further Books

Programming in C, 4th Edition,
Stephen G. Kochan, Addison-Wesley, 2014,
ISBN 978-0321776419

21st Century C: C Tips from the New School, Ben Klemens,
O’Reilly Media, 2012,
ISBN 978-1449327149

The C Programming Language, 2nd Edition (ANSI C) , Brian W.
Kernighan, Dennis M. Ritchie, Prentice Hall, 1988 (1st edition –
1978)

Advanced Programming in the UNIX Environment, 3rd edition,
W. Richard Stevens, Stephen A. Rago Addison-Wesley, 2013,
ISBN 978-0-321-63773-4

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 9 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Further Resources

The C++ Programming Language, 4th Edition (C++11) ,
Bjarne Stroustrup, Addison-Wesley, 2013, ISBN 978-0321563842

Introduction to Algorithms, 3rd Edition, Cormen, Leiserson,
Rivest, and Stein, The MIT Press, 2009, ISBN 978-0262033848

Algorithms, 4th Edition , Robert Sedgewick, Kevin Wayne,
Addison-Wesley, 2011, ISBN 978-0321573513

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 10 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Course Goals
■ Master (yourself) programming skills.

Labs, homeworks, exam

■ Acquire knowledge of C programming language
■ Acquire experience of C programming to use it efficiently

Your own experience!

■ Gain experience to read, write, and understand small C programs
■ Acquire programming habits to write

■ easy to read and understandable source codes
■ reusable programs

■ Experience programming with
■ Workstation/desktop computers – using services of operating system

E.g., system calls, read/write files, input and outputs
■ Multithreaded applications
■ Embedded applications – STM32F446 Nucleo

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 12 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Teaching Programming in B3B36PRG
■ Our aim is to build your experience and develop your programming skills.

■ Programming vs. algorithmization;
■ Programming is the “craft” of how to implement an algorithm correctly.
■ Functional is not enough - the program must be correct too! Expected input vs. what the user can input.

■ The learning load is therefore spread over the course of the semester.
■ Practice assignments and homework deadlines.

■ Systematic development of programming skills throughout the semester is essential.
Typically, there is time at the beginning of the semester to understand the principles (reading the textbook)!

■ Without knowing the constructs and basic commands, you cannot program effectively.
■ Know and know how to use (not “stick”). Dependence on whisperer or Co-pilot!

■ Starting with relatively simple tasks to learn programming constructs and how to organize
source code. Code clarity and the ability to navigate code efficiently!

■ The assignments can always be implemented based on the topics covered the lectures/labs.
Solutions with more advanced constructs may be more elegant(shorter), but may not provide the necessary insight.

■ In the first lectures we cover the necessary knowledge, which is further deepened.
■ Exercises complement the lectures and give more space for practical learning.

■ You can choose a practical way of absorbing programming knowledge from examples, which is
suitable to complement theoretical preparation from textbook(s).

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 13 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Overview of the Lectures
1. Course information, Introduction to C programming K. N. King: chapters 1, 2, and 3
2. Writing your program in C, control structures (loops), expressions K. N. King: chapters 4, 5, 6, and 20
3. Data types, arrays, pointer, memory storage classes, function call K. N. King: chapters 7, 8, 9, 10, 11, and 18
4. Data types: arrays, strings, and pointers K. N. King: chapters 8, 11, 12, 13, and 17
5. Data types: Struct, Union, Enum, Bit fields. Preprocessor and Large Programs

K. N. King: chapters 10, 14, 15, 16, and 20
6. Input/Output – reading/writting from/to files and other communication channels, Standard C library – selected

functions K. N. King: chapters 21, 22, 23, 24, 26, and 27
7. Parallel and multi-thread programming – methods and synchronizations primitives
8. Multi-thread application models, POSIX threads and C11 threads
9. C programming language wrap up, examples such as linked lists

10. Accuracy and Speed of Calculation
11. ANSI C, C99, C11 and differences between C and C++ Introduction to C++.
12. Quick introduction to C++

Reserve (Rector’s day)
13. Resource Ownership in C++

All supporting materials for the lectures are available at
https://cw.fel.cvut.cz/wiki/courses/b3b36prg/start

Read slides, textbook, or even watch the recorded lectures before the lecture contact time!

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 14 / 65

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/start

Course Organization Course Goals and Means of Achieving the Course Goals

Homeworks
■ 1+7 homeworks - seven for the workstation.

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start

1. HW 00 – Testing (1 point) 1 h

2. HW 01 – ASCII Art (2 points) 3 h
Coding style penalization – up to -100% from the gain points.

3. HW 02 – Prime Factorization (2 points + 4 points bonus) Coding style 4 h + 4 h (bonus)
4. HW 03 – Caesar Cipher (2 points + 2 points bonus) Coding style 3 h + 3 h (bonus)

5. HW 04 – Text Search (2 points + 3 points optional) 5 h

6. HW 05 – Matrix Calculator (2 points + 3 points optional + 4 points bonus) Coding style! 6 h + 5 h (bonus)

7. HW 06 – Circular Buffer (2 points + 2 points optional) 5 h

8. HW 07 – Linked List Queue with Priorities (2 pts + 2 pts optional) 7 h

■ All homeworks must be submitted to award an ungraded assessment Total about 42–47 hours.
Late submission is penalized!

■ Coding style needs to be learn, penalization is to motivate you thinking about it and learn the craft of coding.
If you improve over the semester, penalization can be compensated at the end.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 15 / 65

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/start

Course Organization Course Goals and Means of Achieving the Course Goals

Semestral Project

■ A combination of control and computational applications with multithreading,
communication, and user interaction.

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/semestral-project/start

■ Mandatory task can be awarded up to 20 points.
■ Bonus part can be awarded for additional 10 points.

Up to 30 points in the total for the semestral project.

■ Minimum required points: 10!

Deadline – best before 17.05.2024.
Further updates and additional points might be possible!

Deadline – 19.05.2024.

■ Expected required time to finish the semestral project is about 30–50 hours.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 16 / 65

https://cw.fel.cvut.cz/wiki/courses/b3b36prg/semestral-project/start

Course Organization Course Goals and Means of Achieving the Course Goals

Expected and Reported Times Needed to Complete Homeworks
■ B3B36PRG - Average sum of the

reported median times.
■ 96 hours (with HW05B

∼ 6 h, SEM ∼ 30 h).

■ 6 credits is about 150–180 hours
that is

■ 42 h contact part
■ 10 h exam, and
■ about 100–128 hours for

homeworks.
■ Plan your work! Use the first

weeks to read the textbook!

Reported (in the literature) programming
courses success rate is about 30 %–75 %. It
is usually at the end of other STEM courses.
PRG is not an exception.
2022/2023: 73 % (97 % of awarded credits)
2021/2022: 60 % (97 % of awarded credits)
2020/2021: 60 % (95 % of awarded credits)
2019/2020: 73 % (97 % of awarded credits)

0
1
0

2
0

3
0

4
0

5
0

HW
00

HW
01

HW
02

HW
03

HW
04

HW
05

HW
05
B

HW
06

HW
07

SE
M

2017
2018
2019
2020
2021
2022
2023

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 17 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Homework Assignment – BRUTE
■ BRUTE – Bundle for Reservation, Uploading, Testing and Evaluation

■ Formal check – compiling the program.
■ Functionality and correctness testing – checking output for a given input.

■ Public inputs and corresponding outputs / non-public inputs.
■ Test the program yourself before uploading it.

■ Using the available inputs and outputs.
■ Creating your own inputs and debugging the program.
■ Creating inputs with the included input generator.
■ Verifying the output with the attached test or reference program.

■ Understanding the code and checking possible states.
■ For each line, you should be able to answer why it is there and what it does!
■ For each function or input retrieval from the user, parse the possible input values

or function return values!
■ If the input or return value is critical in terms of functionality, check the input and/or

the appropriate action, e.g., output a message and exit the program.

For example, the expected input is a number and the user enters something else.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 18 / 65

Course Organization Course Goals and Means of Achieving the Course Goals

Tasks and BRUTE
■ Tasks are not just about submitting an implementation that passes the BRUTE tests.

■ The goal is not to submit tasks in BRUTE, it is to verify the program functionality.
■ BRUTE is a tool to continuously check your progress and gained knowledge.
■ The goal is to learn to independently program functional programs correctly.

■ Tasks are all about gaining gradual experience with specific constructs.
■ All of the task assignments have been implemented many times, and even generative AI can do it.

In this course you have the opportunity to understand C programming through your
own implementation of assignments. The task successful submission is a means to
reach the goal, not the goal itself.

■ Tasks are very similar in relative difficulty. It is important to solve the tasks independently and
to learn the sub-skills. Absolutely, the tasks get progressively more and more difficult!

■ Rather than struggling too long by your own, ask (on Discord), for practice or consultation.
■ Tasks HW01–HW03 and HW05 are checked for correctness and code clarity.

■ Focused on consistency, readability, and modularity (splitting into functions).
In terms of training and learning, try to split even a seemingly trivial program into multiple functions.

■ The motivation is not to spend too much time with coding without significant progress.
Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 19 / 65

Program in C Values and Variables Standard Input/Output

Part II

Part 2 – Introduction to C Programming

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 20 / 65

Program in C Values and Variables Standard Input/Output

C Programming Language
■ Low-level programming language.
■ System programming language (operating system).

Language for (embedded) systems — MCU, cross-compilation.
■ A user (programmer) can do almost everything.

Initialization of the variables, release of the dynamically allocated memory, etc.

■ Very close to the hardware resources of the computer.
Direct calls of OS services, direct access to registers and ports.

■ Dealing with memory is crucial for correct behaviour of the program.
One of the goals of the PRG course is to acquire fundamental principles that can be further generalized
for other programming languages. The C programming language provides great opportunity to became
familiar with the memory model and key elements for writting efficient programs.

It is highly recommended to have compilation of your program
fully under control.

It may look difficult at the beginning, but it is relatively easy and straightforward. Therefore, we highly
recommend to use fundamental tools for your program compilation. After you acquire basic skills, you
can profit from them also in more complex development environments.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 22 / 65

Program in C Values and Variables Standard Input/Output

Writing Your C Program
■ Source code of the C program is written in text files.

■ Header files usually with the suffix .h.
■ Sources files usually named with the suffix .c.

■ Header and source files together with declaration and definition (of functions) support.

■ Organization of sources into several files (modules) and libraries.
■ Modularity – Header file declares a visible interface to others.

A description (list) of functions and their arguments without particular implementation.

■ Reusability
■ Only the “interface” declared in the header files is needed to use functions from available

binary libraries.
■ Sources consists of keywords, language constructs such as expressions and

programmer’s identifiers:
■ variables – named mamory space;
■ function names – named sequences of instructions).

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 23 / 65

Program in C Values and Variables Standard Input/Output

■ Escape sequences for writting special symbols
■ \o, \oo, where o is an octal numeral
■ \xh, \xhh, where h is a hexadecimal numeral

1 int i = ’a’;
2 int h = 0x61;
3 int o = 0141;
4
5 printf("i: %i h: %i o: %i c: %c\n", i, h, o, i);
6 printf("oct: \141 hex: \x61\n");

E.g., \141, \x61 lec01/esqdho.c

■ \0 – character reserved for the end of the text string (null character)

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 24 / 65

Program in C Values and Variables Standard Input/Output

Writing Identifiers in C
■ Identifiers are names of variables (custom types and functions).

Types and functions, viz further lectures.

■ Rules for the identifiers
■ Characters a–z, A–Z, 0–9, and _.
■ The first character is not a numeral.
■ Case sensitive.
■ Length of the identifier is not limited.

First 31 characters are significant – depends on the implementation / compiler.

■ Keywords32

auto break case char const continue default do double else enum
extern float for goto if int long register return short signed sizeof
static struct switch typedef union unsigned void volatile while C98

C99 introduces, e.g., inline, restrict, _Bool, _Complex, _Imaginary.
C11 further adds, e.g., _Alignas, _Alignof, _Atomic, _Generic, _Static_assert,
_Thread_local.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 25 / 65

Program in C Values and Variables Standard Input/Output

Simple C Program

1 #include <stdio.h>
2

3 int main(void)
4 {
5 printf("I like B3B36PRG!\n");
6

7 return 0;
8 }

lec01/program.c

■ Source files are compiled by the compiler to the so-called object files usually with the
suffix .o.

Object code contains relative addresses and function calls or just references to function
without known implementations.

■ The final executable program is created from the object files by the linker.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 26 / 65

Program in C Values and Variables Standard Input/Output

Program Compilation and Execution
■ Source file program.c is compiled into runnable form by the compiler, e.g., clang or
gcc.

clang program.c
■ There is a new file a.out that can be executed, e.g.,

./a.out
Alternatively the program can be run only by a.out in the case the actual working directory is set in the
search path of executable files

■ The program prints the argument of the function printf().
./a.out
I like B3B36PRG!

■ If you prefer to run the program just by a.out instead of ./a.out you need to add your actual
working directory to the search paths defined by the environment variable PATH.

export PATH="$PATH:‘pwd‘"
Notice, this is not recommended, because of potentially many working directories.

■ The command pwd prints the actual working directory, see man pwd.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 27 / 65

Program in C Values and Variables Standard Input/Output

Program Building: Compiling and Linking

■ The previous example combines three particular steps of the program building in a single
call of the command (clang or gcc).

■ The particular steps can be performed individually.

1. Text preprocessing by the preprocessor, which utilizes its own macro language
(commands with the prefix #).

All referenced header files are included into a single source file.

2. Compilation of the source file into the object file.
Names of the object files usually have the suffix .o.

clang -c program.c -o program.o
The command combines preprocessor and compiler.

3. Executable file is linked from the particular object files and referenced libraries by the
linker (linking), e.g.,

clang program.o -o program

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 28 / 65

Program in C Values and Variables Standard Input/Output

Compilation and Linking Programs
■ Program development is editing of the source code (files with suffixes .c and .h).

Human readable

■ Compilation of the particular source files (.c) into object files (.o or .obj). Machine readable

■ Linking the compiled files into executable binary file.
■ Execution and debugging of the application and repeated editing of the source code.

a.out
Preprocesor

Compiler

Header files

.h.c

Source file

Linker

Object files

Lib files

.a/.lib

Object

File

.o/.obj

.o/.obj

Executable binary file

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 29 / 65

Program in C Values and Variables Standard Input/Output

Steps of Compiling and Linking

■ Preprocessor – allows to define macros and adjust compilation according to the par-
ticular environment. The output is text (“source”) file.

■ Compiler – Translates source (text) file into machine readable form.
Native (machine) code of the platform, bytecode, or assembler alternatively.

■ Linker – links the final application from the object files.
Under OS, it can still reference library functions (dynamic libraries linked during the program
execution), it can also contain OS calls (libraries).

■ Particular steps preprocessor, compiler, and linker are usually implemented by a “sin-
gle” program that is called with appropriate arguments.

E.g., clang or gcc.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 30 / 65

Program in C Values and Variables Standard Input/Output

Compilers of C Program Language

■ In PRG, we mostly use compilers from the families of compilers:
■ gcc – GNU Compiler Collection;

https://gcc.gnu.org
■ clang – C language family frontend for LLVM.

http://clang.llvm.org

Under Win, two derived environments can be utilized: cygwin or MinGW.

https://www.cygwin.com/ or MinGW http://www.mingw.org/

But, it is straightforward to use WSL(2) – Windows Subsystem for Linux.

■ Basic usage (flags and arguments) are identical for both compilers.
clang is compatible with gcc

■ Example
■ compile: gcc -c main.c -o main.o
■ link: gcc main.o -o main

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 31 / 65

https://gcc.gnu.org
http://clang.llvm.org
https://www.cygwin.com/
http://www.mingw.org/

Program in C Values and Variables Standard Input/Output

Structure of the Source Code – Commented Example
■ Commented source file program.c.

1 /* Comment is inside the markers (two characters)
2 and it can be split to multiple lines */
3 // In C99 - you can use single line comment
4 #include <stdio.h> /* The #include direct causes to include header file

stdio.h from the C standard library */
5

6 int main(void) // simplified declaration
7 { // of the main function
8 printf("I like B3B36PRG!\n"); /* calling printf() function from the

stdio.h library to print string to the standard output. \n denotes
a new line */

9 return 0; /* termination of the function. Return value 0 to the
operating system */

10 }
Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 32 / 65

Program in C Values and Variables Standard Input/Output

Functions, Modules, and Compiling and Linking

■ Function is the fundamental building block of the modular programming language.
Modular program is composed of several modules/source files.

■ Function definition consists of the
■ Function header;
■ Function body. Definition is the function implementation.

■ Function prototype (declaration) is the function header to provide information how
the function can be called.

It allows to use the function prior its definition, i.e., it allows to compile the code without the
function implementation, which may be located in other place of the source code, or in other
module.

■ Declaration is the function header and it has the form
type function_name(arguments);

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 33 / 65

Program in C Values and Variables Standard Input/Output

Functions in C
■ Function definition inside other function is not allowed in C.
■ Function names can be exported to other modules.

Module is an independent file (compiled independently).
■ Function are implicitly declared as extern, i.e., visible.
■ Using the static specifier, the visibility of the function can be limited to the particular

module. Local module function.

■ Function arguments are local variables initialized by the values passed to the function.
Arguments are passed by value (call by value).

■ C allows recursions – local variables are automatically allocated at the stack.
Further details about storage classes in next lectures.

■ Arguments of the function are not mandatory – void arguments.
fnc(void)

■ The return type of the function can be void, i.e., a function without return value –
void fnc(void);

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 34 / 65

Program in C Values and Variables Standard Input/Output

Program Example / Module
1 #include <stdio.h> /* header file */
2 #define NUMBER 5 /* symbolic constant */
3

4 int compute(int a); /* function header/prototype */
5

6 int main(int argc, char *argv[])
7 { /* main function */
8 int v = 10; /* variable definition - assignment of the memory to the

variable name; it is also declaration that allows using the variable
name from this line */

9 int r; /* variable definition (and declaration) */
10 r = compute(v); /* function call */
11 return 0; /* termination of the main function */
12 }
13

14 int compute(int a)
15 { /* definition of the function */
16 int b = 10 + a; /* function body */
17 return b; /* function return value */
18 }

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 35 / 65

Program in C Values and Variables Standard Input/Output

Program Starting Point – main()

■ Each executable program must contain a single definition of the function and that
function must be the main().

■ The main() function is the starting point of the program with two basic forms.
1. Full variant for programs running under an Operating System (OS).

int main(int argc, char *argv[])
{

...
}

2. For embedded systems without OS

int main(void)
{

...
}

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 36 / 65

Program in C Values and Variables Standard Input/Output

Arguments of the main() Function
■ During the program execution, the OS passes to the program the number of

arguments (argc) and the arguments (argv).
In the case we are using OS.

■ The first argument is the name of the program.

1 int main(int argc, char *argv[])
2 {
3 int v;
4 v = 10;
5 v = v + 1;
6 return argc;
7 }

lec01/var.c

■ The program is terminated by the return in the main() function.
■ The returned value is passed back to the OS and it can be further use, e.g., to control

the program execution.
Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 37 / 65

Program in C Values and Variables Standard Input/Output

Example of Compilation and Program Execution
■ Building the program by the clang compiler – it automatically joins the compilation

and linking of the program to the file a.out.
clang var.c

■ The output file can be specified, e.g., program file var.
clang var.c -o var

■ Then, the program can be executed as follows.
./var

■ The compilation and execution can be joined to a single command.
clang var.c -o var; ./var

■ The execution can be conditioned to successful compilation.
clang var.c -o var && ./var

Programs return value — 0 means OK.

Logical operator && depends on the command interpret, e.g., sh, bash, zsh.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 38 / 65

Program in C Values and Variables Standard Input/Output

Example – Program Execution under Shell
■ The return value of the program is stored in the variable $?.

sh, bash, zsh

■ Example of the program execution with different number of arguments.

./var

./var; echo $?
1

./var 1 2 3; echo $?
4

./var a; echo $?
2

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 39 / 65

Program in C Values and Variables Standard Input/Output

Writting Values of the Numeric Data Types – Literals

■ Values of the data types are called literals
■ C has 6 type of constants (literals)

■ Integer
■ Rational

We cannot simply write irrational numbers.
■ Characters
■ Text strings
■ Enumerated Enum

■ Symbolic – #define NUMBER 10
Preprocessor

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 41 / 65

Program in C Values and Variables Standard Input/Output

Integer Literals

■ Integer values are stored as one of the integer type (keywords): int, long, short,
char and their signed and unsigned variants.

Further integer data types are possible.

■ Integer values (literals)
■ Decimal 123 450932
■ Hexadecimal 0x12 0xFAFF (starts with 0x or 0X)
■ Octal 0123 0567 (starts with 0)
■ unsigned 12345U (suffix U or u)
■ long 12345L (suffix L or l)
■ unsigned long 12345ul (suffix UL or ul)
■ long long 12345LL (suffix LL or ll)

■ Without suffix, the literal is of the type typu int.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 42 / 65

Program in C Values and Variables Standard Input/Output

Literals of Rational Numbers

■ Rational numbers can be written
■ with floating point – 13.1;
■ or with mantissa and exponent – 31.4e-3 or 31.4E-3.

Scientific notation

■ Floating point numeric types depends on the implementation, but they usually follow
IEEE-754-1985. float, double

■ Data types of the rational literals:
■ double – by default, if not explicitly specified to be another type;
■ float – suffix F or f;

float f = 10.f;
■ long double – suffix L or l.

long double ld = 10.1l;

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 43 / 65

Program in C Values and Variables Standard Input/Output

Character Literals

■ Format – single (or multiple) character in apostrophe.
’A’, ’B’ or ’\n’

■ Value of the single character literal is the code of the character.
’0’∼ 48, ’A’∼ 65

Value of character out of ASCII (greater than 127) depends on the compiler.

■ Type of the character constant (literal).
■ Character constant is the int type.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 44 / 65

Program in C Values and Variables Standard Input/Output

String Literals
■ Format – a sequence of character and control characters (escape sequences) enclosed

in quotation (citation) marks.
"This is a string constant with the end of line character \n".

■ String constants separated by white spaces are joined to single constant, e.g.,

"String literal" "with the end of the line character\n"

is concatenate into

"String literal with end of the line character\n"
■ Type

■ String literal is stored in the array of the type char terminated by the null character
’\0’.
E.g., String literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The size of the array must be about 1 item longer to store \0!
More about text strings in the following lectures and labs.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 45 / 65

Program in C Values and Variables Standard Input/Output

Constants of the Enumerated Type
■ By default, values of the enumerated type starts from 0 and each other item increase

the value about one, values can be explicitly prescribed.

enum {
SPADES,
CLUBS,
HEARTS,
DIAMONDS

};

enum {
SPADES = 10,
CLUBS, /* the value is 11 */
HEARTS = 15,
DIAMONDS = 13

};

The enumeration values are usually written in uppercase.

■ Type – enumerated constant is the int type.
■ Value of the enumerated literal can be used in loops.

enum { SPADES = 0, CLUBS, HEARTS, DIAMONDS, NUM_COLORS };

for (int i = SPADES; i < NUM_COLORS; ++i) {
...

}

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 46 / 65

Program in C Values and Variables Standard Input/Output

Symbolic Constant – #define
■ Format – the constant is established by the preprocessor command #define.

■ It is macro command without argument.
■ Each #define must be on a new line.

#define SCORE 1

Usually written in uppercase.

■ Symbolic constants can express constant expressions.
#define MAX_1 ((10*6) - 3)

■ Symbolic constants can be nested.
#define MAX_2 (MAX_1 + 1)

■ Preprocessor performs the text replacement of the define constant by its
value.

#define MAX_2 (MAX_1 + 1)
It is highly recommended to use brackets to ensure correct evaluation of the expression, e.g., the
symbolic constant 5*MAX_1 with the outer brackets is 5*((10*6) - 3)=285 vs 5*(10*6) - 3=297.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 47 / 65

Program in C Values and Variables Standard Input/Output

Variable with a constant value
modifier (keyword) (const)

■ Using the keyword const, a variable can be marked as constant.
Compiler checks assignment and do not allow to set a new value to the variable.

■ A constant value can be defined as follows.
const float pi = 3.14159265;

■ In contrast to the symbolic constant.
#define PI 3.14159265

■ Constant values have type, and thus it supports type checking.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 48 / 65

Program in C Values and Variables Standard Input/Output

Example: Sum of Two Values
1 #include <stdio.h>
2

3 int main(void)
4 {
5 int sum; // definition of local variable of the int type
6

7 sum = 100 + 43; /* set value of the expression to sum */
8 printf("The sum of 100 and 43 is %i\n", sum);
9 /* %i formatting command to print integer number */

10 return 0;
11 }

■ The variable sum of the type int represents an integer number. Its value is stored in
the memory.

■ sum is selected symbolic name of the memory location, where the integer value (type
int) is stored.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 49 / 65

Program in C Values and Variables Standard Input/Output

Example of Sum of Two Variables

1 #include <stdio.h>
2

3 int main(void)
4 {
5 int var1;
6 int var2 = 10; /* inicialization of the variable */
7 int sum;
8
9 var1 = 13;

10
11 sum = var1 + var2;
12

13 printf("The sum of %i and %i is %i\n", var1, var2, sum);
14
15 return 0;
16 }

■ Variables var1, var2 and sum represent three different locations in the memory (allo-
cated automatically), where three integer values are stored.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 50 / 65

Program in C Values and Variables Standard Input/Output

Variable Definition

■ The variable definition has a general form
declaration-specifiers variable-identifier;

■ Declaration specifiers are following.
■ Storage classes: at most one of the auto, static, extern, register;
■ Type quantifiers: const, volatile, restrict;

None or more type quantifiers are allowed.
■ Type specifiers: void, char, short, int, long, float, double, signed, unsigned.

In addition, struct and union type specifiers can be used. Finally, own types defined by
typedef can be used as well.

Detailed description in further lectures.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 51 / 65

Program in C Values and Variables Standard Input/Output

Assignment, Variables, and Memory – Visualization
unsigned char

1 unsigned char var1;
2 unsigned char var2;
3 unsigned char sum;
4

5 var1 = 13;
6 var2 = 10;
7

8 sum = var1 + var2;

■ Each variable allocate 1 byte
■ Content of the memory is not defined after

allocation
■ Name of the variable “references” to the

particular memory location
■ Value of the variable is the content of the

memory location

13 10 23

var1 var2 sum

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 52 / 65

Program in C Values and Variables Standard Input/Output

Assignment, Variables, and Memory – Visualization int

1 int var1;
2 int var2;
3 int sum;
4

5 // 00 00 00 13
6 var1 = 13;
7

8 // x00 x00 x01 xF4
9 var2 = 500;

10

11 sum = var1 + var2;

■ Variables of the int types allocate 4 bytes.
Size can be find out by the operator sizeof(int).

■ Memory content is not defined after the definition of
the variable to the memory.

13 0 0 0 0xf4 0x01 0x00 0x00

var1 var2

0x1 0x2 0x0 0x0 0xC 0xD 0xE 0xF

sum

500 (dec) is 0x01F4 (hex)

513 (dec) is 0x0201 (hex)

For Intel x86 and x86-64 architectures, the values (of multi-byte types) are stored in the
little-endian order.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 53 / 65

Program in C Values and Variables Standard Input/Output

Standard Input and Output

■ An executed program within Operating System (OS) environments has assigned (usually
text-oriented) standard input (stdin) and output (stdout).

Programs for MCU without OS does not have them.

■ The stdin and stdout streams can be utilized for communication with a user.
■ Basic function for text-based input is getchar() and for the output putchar().

Both are defined in the standard C library <stdio.h>.

■ For parsing numeric values the scanf() function can be utilized.
■ The function printf() provides formatted output, e.g., a number of decimal places.

They are library functions, not keywords of the C language.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 55 / 65

Program in C Values and Variables Standard Input/Output

Formatted Output – printf()

■ Numeric values can be printed to the standard output using printf().
man printf or man 3 printf

■ The first argument is the format string that defines how the values are printed.
■ The conversion specification starts with the character ’%’.
■ Text string not starting with % is printed as it is.
■ Basic format strings to print values of particular types are as follows.

char %c
_Bool %i, %u
int %i, %x, %o
float %f, %e, %g, %a
double %f, %e, %g, %a

■ Specification of the number of digits is possible, as well as an alignment to left (right),
etc. Further options in homeworks and lab exercises.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 56 / 65

Program in C Values and Variables Standard Input/Output

Formatted Input – scanf()
■ Numeric values can be read (from stdin) by the scanf() function. man scanf or man 3 scanf
■ The argument of the function is a format string. Syntax is similar to printf().
■ A memory address of the variable has to be provided to set its value from the stdin.
■ The return value of the scanf() call is the number of successfully parsed values.
■ Example of readings integer value and value of the double type.

1 #include <stdio.h> // printf and scanf
2 #include <stdlib.h> // EXIT_FAILURE and EXIT_SUCCESS

4 int main(void)
5 {
6 int ret = EXIT_FAILURE;
7 int i;
8 double d;

10 printf("Enter int value: ");
11 int r = scanf("%i", &i); // operator & returns the address of i
12 if (r == 1)
13 printf("Enter a double value: ");
14 if (r == 1 && scanf("%lf", &d) == 1) { // !!! Return value !!!
15 printf("You entered %02i and %0.1f\n", i, d);
16 ret = EXIT_SUCCESS; // zero – exit success
17 }
18 return ret; // indicate failure or success
19 } lec01/scanf.c

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 57 / 65

Program in C Values and Variables Standard Input/Output

Example: Program with Output to the stdout 1/2
■ Instead of printf() we can use fprintf() with explicit output stream stdout, or

alternatively stderr; both functions from the <stdio.h>.

1 #include <stdio.h>

3 int main(int argc, char **argv) {
4 int r = fprintf(stdout, "My first program in C!\n");
5 fprintf(stdout, "printf() returns %d that is a number of printed characters\n", r);
6 r = fprintf(stdout, "123\n");
7 fprintf(stdout, "printf(\"123\\n\") returns %d because of end-of-line ’\\n’\n", r);
8 fprintf(stdout, "Its name is \"%s\"\n", argv[0]);
9 fprintf(stdout, "Run with %d arguments\n", argc);

10 if (argc > 1) {
11 fprintf(stdout, "The arguments are:\n");
12 for (int i = 1; i < argc; ++i) {
13 fprintf(stdout, "Arg: %d is \"%s\"\n", i, argv[i]);
14 }
15 }
16 return 0;
17 } lec01/pring_args.c

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 58 / 65

Program in C Values and Variables Standard Input/Output

Example: Program with Output to the stdout 2/2

■ Notice, using the header file <stdio.h>, several other files are included as well to define
types and functions for input and output. Check by, e.g., clang -E print_args.c

./print_args first second
My first program in C!
printf() returns 23 that is a number of printed characters
123
printf("123\n") returns 4 because of end-of-line ’\n’
Its name is "./print_args"
Run with 3 arguments
The arguments are:
Arg: 1 is "first"
Arg: 2 is "second"

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 59 / 65

Program in C Values and Variables Standard Input/Output

Programming - Loops - Example Printed Text Message

■ For example, a message can be printed 4× by repeating the print command.
1 #include <stdio.h>

3 int main(void)
4 {
5 printf("I like B3B36PRG!\n");
6 printf("I like B3B36PRG!\n");
7 printf("I like B3B36PRG!\n");
8 printf("I like B3B36PRG!\n");
9 return 0;

10 }

1 #include <stdio.h>

3 int main(void)
4 {
5 const int N = 4;
6 for (int i = 0; i < N; ++i) {
7 printf("I like B3B36PRG!\n");
8 }
9 return 0;

10 }

■ Using a loop and a control variable is the programming approach.
■ We can generalize the example by having the user specify the number of repetitions

from the standard input.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 60 / 65

Program in C Values and Variables Standard Input/Output

Programming - Loops – Example 1/3

1 #include <stdio.h>
2 #include <stdlib.h>

4 void print(int n);

6 int main(void)
7 {
8 int ret = EXIT_SUCCESS;
9 int n;

10 printf("Enter a positive integer number from 1 to 9: ");
11 int r = scanf("%d", &n); // passing address of the n variable
12 if (r == 1 && n > 0 && n < 10) {
13 print(n);
14 } else {
15 fprintf("ERROR: Input value must be in the range (0,10)\n");
16 ret = EXIT_FAILURE;
17 }
18 return ret;
19 } lec01/print2.c

■ Naive, functional solution, in principle sufficient, but we can decompose such a program.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 61 / 65

Program in C Values and Variables Standard Input/Output

Programming - Loops – Example 2/3
1 #include <stdio.h>
2 #include <stdlib.h>

4 void print(int n);

6 int main(void)
7 {
8 int ret = EXIT_SUCCESS;
9 int n;

10 printf("Enter a positive integer number from 1 to 9: ");
11 int r = scanf("%d", &n); // passing address of the n variable
12 if (r == 1 && n > 0 && n < 10) {
13 print(n);
14 } else {
15 fprintf("ERROR: Input value must be in the range (0,10)\n");
16 ret = EXIT_FAILURE;
17 }
18 return ret;
19 } lec01/print2.c

■ Print in a separate function print().
■ Better, but still relatively complex – we can separate the loading, but also generalize the values and avoid

„magic numbers“ in the function definition.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 62 / 65

Program in C Values and Variables Standard Input/Output

Programming - Loops – Example 3/3
1 #include <stdio.h>
2 #include <stdlib.h> // Because of EXIT_SUCCESS

4 int read(int min, int max, int *n);
5 void print(int n);

7 #define MIN 1
8 #define MAX 9

10 int main(void)
11 {
12 int ret = EXIT_SUCCESS;
13 int n; // memory allocation for the read value
14 if (read(MIN, MAX, &n)) {
15 print(n);
16 } else {
17 printf("ERROR: Input value must be in the

range (%d,%d)\n", MIN - 1, MAX + 1);
18 ret = EXIT_FAILURE;
19 }
20 return ret;
21 }

23 int read(int min, int max, int *n)
24 {
25 printf("Enter a positive integer number from %d to %d: ",

min, max);
26 return scanf("%d", n) == 1 && *n >= min && *n <= max; //

logical true is a value != 0, shortcut evaluation
27 }

29 void print(int n)
30 {
31 int i = 0;
32 while (i < n) {
33 puts("I like B3B36PRG!");
34 i = i + 1;
35 }
36 }

lec01/print3.c

■ We pass the read() function a pointer to a valid memory address, it is done programmatically.
■ The program returns a return value and warns the user on incorrect input. We can also use fprintf(stderr,).

■ We can further extend the values of MIN and MAX to be defined at compile time (#ifndef).

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 63 / 65

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 64 / 65

Topics Discussed

Topics Discussed

■ Information about the Course
■ Introduction to C Programming

■ Program, source codes and compilation of the program
■ Structure of the souce code and writting program
■ Variables and basic types
■ Variables, assignment, and memory
■ Basic Expressions
■ Standard input and output of the program
■ Formating input and output

■ Next: Expressions and Bitwise Operations, Selection Statements and Loops

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 65 / 65

Programs

Part IV

Appendix

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 66 / 65

Programs

Example of step debugging

https://youtu.be/rTv_ypcm9XI (∼ 25 min)
Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 67 / 65

./videos/prg-vscode-debug-demo-2023-12-13.mkv
https://youtu.be/rTv_ypcm9XI

Programs

Computer Calculation

■ Understanding of the calculation on a procesor simulator such as Little Man Computer.
https://peterhigginson.co.uk/LMC/, https://gcsecomputing.org.uk/lmc/

http://www.vivaxsolutions.com/web/lmc.aspx, https://www.youtube.com/watch?v=6cbJWV4AGmk

■ LDA – Load to the acc.
■ STA – Store the acc. to address
■ ADD – Add to the acc.
■ INP – Input to the acc.
■ OUT – Output of the acc.
■ BRP – Set PC on zero or possitive

acc.
■ HLT – Stop executing program

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 69 / 65

https://peterhigginson.co.uk/LMC/
https://gcsecomputing.org.uk/lmc/
http://www.vivaxsolutions.com/web/lmc.aspx
https://www.youtube.com/watch?v=6cbJWV4AGmk

Programs

Example – Processing the Source Code by Preprocessor
■ Using the -E flag, we can perform only the preprocessor step.

gcc -E var.c
Alternatively clang -E var.c

1 # 1 "var.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "var.c"
5 int main(int argc, char **argv) {
6 int v;
7 v = 10;
8 v = v + 1;
9 return argc;

10 }
lec01/var.c

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 70 / 65

Programs

Example – Compilation of the Source Code to Assembler
■ Using the -S flag, the source code can be compiled to Assembler.

clang -S var.c -o var.s
1 .file "var.c"
2 .text
3 .globl main
4 .align 16, 0x90
5 .type main,@function
6 main:

@main
7 .cfi_startproc
8 # BB#0:
9 pushq %rbp

10 .Ltmp2:
11 .cfi_def_cfa_offset 16
12 .Ltmp3:
13 .cfi_offset %rbp, -16
14 movq %rsp, %rbp
15 .Ltmp4:
16 .cfi_def_cfa_register %rbp
17 movl $0, -4(%rbp)
18 movl %edi, -8(%rbp)

19 movq %rsi, -16(%rbp)
20 movl $10, -20(%rbp)
21 movl -20(%rbp), %edi
22 addl $1, %edi
23 movl %edi, -20(%rbp)
24 movl -8(%rbp), %eax
25 popq %rbp
26 ret
27 .Ltmp5:
28 .size main, .Ltmp5-main
29 .cfi_endproc
30
31
32 .ident "FreeBSD clang version 3.4.1 (

tags/RELEASE_34/dot1-final 208032)
20140512"

33 .section ".note.GNU-stack","",
@progbits

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 71 / 65

Programs

Example – Compilation to Object File
■ The souce file is compiled to the object file.

clang -c var.c -o var.o
% clang -c var.c -o var.o
% file var.o
var.o: ELF 64-bit LSB relocatable, x86-64, version 1 (FreeBSD), not

stripped

■ Linking the object file(s) provides the executable file.
clang var.o -o var

% clang var.o -o var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

dynamically linked (uses shared libs), for FreeBSD 10.1 (1001504)
, not stripped

dynamically linked
not stripped

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 72 / 65

Programs

Example – Executable File under OS 1/2
■ By default, executable files are “tied” to the C library and OS services.
■ The dependencies can be shown by ldd var.

ldd – list dynamic object dependenciesldd var
var:

libc.so.7 => /lib/libc.so.7 (0x2c41d000)

■ The so-called static linking can be enabled by the -static.
clang -static var.o -o var
% ldd var
% file var
var: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD),

statically linked, for FreeBSD 10.1 (1001504), not stripped
% ldd var
ldd: var: not a dynamic ELF executable

Check the size of the created binary files!
Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 73 / 65

Programs

Example – Executable File under OS 2/2

■ The compiled program (object file) contains symbolic names (by default).
E.g., usable for debugging.

clang var.c -o var
wc -c var

7240 var
wc – word, line, character, and byte count

-c – byte count

■ Symbols can be removed by the tool (program) strip.

strip var
wc -c var

4888 var

Alternatively, you can show size of the file by the command ls -l.

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 74 / 65

Programs

Extended Variants of the main() Function

■ Extended declaration of the main() function provides access to the environment
variables. For Unix and MS Windows like OS.

int main(int argc, char **argv, char **envp) { ... }

The environment variables can be accessed using the function getenv() from the standard library
<stdlib.h>.

lec01/main_env.c

■ For Mac OS X, there are further arguments.
int main(int argc, char **argv, char **envp, char **apple)
{

...
}

Jan Faigl, 2024 B3B36PRG – Lecture 01: Introduction to C Programming 75 / 65

	1
	Course Organization
	Course Goals and Means of Achieving the Course Goals

	2
	Program in C
	Values and Variables
	Standard Input/Output

	Summary
	Topics Discussed

	Appendix
	Programs

