
DEEP LEARNING (SS2023)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier q(k |x; θ) with
classes k = ±1. It is defined as a neural network with parameters θ and with the sigmoid
logistic distribution in the output.

The true labels ki of the images xi are however unknown. Instead we are given training
pairs (xi, ti) with “noisy labels” ti = ±1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ti is
correct (ti = ki) with probability 1− ε and incorrect (ti = −ki) with probability ε.

a) Formulate the conditional maximum likelihood learning of the parameters θ.

Hint: the conditional likelihood of the training data sample (xi, ti) is obtained by marginal-
izing over the unknown true label

p(ti |xi) =
∑

k∈{−1,1}

p(ti | k)q(k |xi; θ),

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss

−
∑
i

∑
k

pi(k) log q(k |xi;w), (1)

where pi(k) denote "softened 1-hot labels": pi(k) = 1 − ε for k = ti and ε otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let q(x) and p(x) be two factorizing probability distributions for random
vectors x ∈ Rn, i.e.

p(x) =
n∏

i=1

p(xi) and q(x) =
n∏

i=1

q(xi).

Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, i.e.

DKL(q(x) ‖ p(x)) =
n∑

i=1

DKL(q(xi) ‖ p(xi))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.
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Assignment 4 (AP vs Triplet Loss). Starting with the expression for AP (see eq. (3) in
the metric learning lab):

AP = 1− 1

T

∑
p∈P

∑
n∈NJdn < dpK

k(p)
, (2)

Verify that JzK ≤ max(z/α + 1, 0) holds for each α > 0 and use it as an approximation
in the numerator of (2). How the resulting approximate AP is related to the triplet loss we
used in the metric learning lab?

2


