DEEP LEARNING (SS2023)
SEMINAR 6

Assignment 1 (ML with noisy labels). We want to learn a binary classifier ¢(k | x; 0) with
classes k£ = +1. It is defined as a neural network with parameters ¢ and with the sigmoid
logistic distribution in the output.

The true labels k; of the images x; are however unknown. Instead we are given training
pairs (z;,t;) with “noisy labels” ¢, = +1. They might have been incorrectly assigned by
the person who annotated the data. More specifically, let us assume that the label ¢; is
correct (¢; = k;) with probability 1 — ¢ and incorrect (¢; = —k;) with probability e.

a) Formulate the conditional maximum likelihood learning of the parameters 6.

Hint: the conditional likelihood of the training data sample (x;, t;) is obtained by marginal-
izing over the unknown true label

pltilz) = Y plti| k)a(k|:0),
ke{-1,1}

where p(t | k) is the labelling noise model.

b) A popular practical solution is to minimize the cross-entropy loss
—ZZI% )log g(k | 2 w), (1)

where p; (k) denote "softened 1-hot labels": p;(k) = 1 — ¢ for k = ¢; and € otherwise.
Prove that the negative cross-entropy (1) is a lower bound of the log likelihood in a). Use
Jensen’s inequality for log.

Assignment 2. Let ¢(x) and p(z) be two factorizing probability distributions for random
vectors © € R", i.e.
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Prove that their KL-divergence decomposes into a sum of KL-divergences for the compo-
nents, i.e.

Drr(q(z) || p(x) ZDKL z;) || p(x:))

Assignment 3. Compute the KL-divergence of two univariate normal distributions.



Assignment 4 (AP vs Triplet Loss). Starting with the expression for AP (see eq. (3) in
the metric learning lab):
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Verify that [z] < max(z/a + 1,0) holds for each o > 0 and use it as an approximation
in the numerator of (2). How the resulting approximate AP is related to the triplet loss we
used in the metric learning lab?



