Combinatorial Optimization
Lab 11: Bratley’s problem

Industrial Informatics Department
Czech Technical University in Prague
https://industrialinformatics.fel.cvut.cz/

April 29, 2024

Outline of the tutorial:

e Revision — scheduling, «|8]vy notation (10 minutes)
e Brately’s algorithm: application of a branch-and-bound (B&B) (45 minutes)
o Assignment of HW4 (5 minutes)

This tutorial is about scheduling of the tasks on resources. At the beginning we revise the scheduling
in general, including the Graham’s notation. Afterwards, we focus on problem 1|r;, (Zj|cmax, which is
formally introduced and solved by Bratley’s algorithm. Finally, we apply our knowledge and use the
Bratley’s algorithm to solve the last homework.

1 Revision of scheduling

In scheduling! problems, we are trying to find assignment of tasks to resources in time. Tasks can be
characterized by some parameters, e.g., release time, deadline/due date, processing time, etc. Considering
the machine environment, there can be one machine or multiple machines, which might or might not be
related somehow. We might be looking for a feasible schedule, or for an optimal schedule with respect
to some objective function. The output of the scheduling is an assignment of tasks to resources in time
and it is mostly depicted as a Gantt chart [1] where an independent variable is a discrete time (z-axis)
and dependent variable is utilization of resources/processors (y-axis).

1.1 Graham’s notation

As there are many different scheduling problems, it is sometimes hard to find a relevant research and see
if the problem was already solved or not. For the categorization of scheduling problems, there exists a
Graham’s (or Graham-Blazewicz) notation, also called a|8]y notation [I, 2]. This notation is trying to
characterize the scheduling problem based on 3 aspects:

a contains the characteristics of resources — the number (1 to co) and type (P for parallel identical,
Q for parallel uniform, etc.),

 specifies the characteristics of tasks and additional resources (r; means that each task has release
time, pmtn means that preemption is allowed, etc.),

~ denotes an optimality criterion (Cy,q, for minimizing the schedule length, L4, for minimizing the
maximal lateness, > U; for minimizing the number of tasks exceeding their due date, etc.).

INote that there is a difference between the planning and scheduling. In planning, we select individual actions leading
from a starting state to the goal state — we are interested in ‘what actions to choose’ and ‘when’. Whereas in scheduling,
we want to know ‘when’ to perform a given set of actions (given time constraints, resource constraints, objective function
etc.).

https://industrialinformatics.fel.cvut.cz/

Scheduling zoo There are many scheduling problems, which have been categorized using this standard
notation. Scheduling zoo (http://schedulingzoo.lip6.fr/) is a webpage, where you can see some of
the scheduling problems together with links to relevant articles describing their complexities. Try to look
through the pages, and see the diversity of the scheduling problems.

2 Monoprocessor scheduling and Bratley’s algorithm

Now, we will concentrate on a problem of 1|r;, dj|Cmax, i.e., the problem with a single machine and tasks
characterized by release times and deadlines, where we want to minimize a total length of the schedule.

2.1 Problem statement
Input: We are given a set to tasks 7 = {T1,...,T,}, where each task T; € T is characterized by its

release time 7;, deadline d; and processing time p;, see Figure 1(a).

minimize Clax
Di

—— A
! : ! D]
T4 d; time time
(a) A single task (b) A schedule

Figure 1: Illustration of the studied problem.

Output: We want to find a feasible schedule (start times of the individual tasks; tasks cannot overlap)
such that the completion time of the last task (Cax) is minimal, see Figure 1(b).

Complexity: The problem is AP-hard, which can be shown by a polynomial reduction from 3-partition
problem. The proof was shown during the lectures.

Question: What would happen if we had problems 1| — |Cryax or 1|75, (Zj,pmntk?“

2Answer: Both would be simple — solvable in polynomial time.

Note: Remember that we have already solved the problem by an ILP (the catering problem). Maybe
you have found out that the performance of the ILP model we came up with is not very good (model
with big-M might be able to solve, say, 30-40 tasks). A better ILP model (position based model) was
discussed during the lectures. Although an ILP is a powerful modeling approach, we might speed up the
solving process by designing a specialized algorithm, which will be using pruning techniques designed
specifically for the studied problem. We will design such an algorithm now.

2.2 Bratley’s algorithm

Bratley’s algorithm is based on a branch-and-bound procedure.

Question: Did you meet B&B anywhere?*

2Answer: Yes, as we have already discussed, an ILP can be solved by the B&B algorithm (branching on
the fractional values of the variables and bounding by LP relaxations). Some of you might have also met B&B
algorithm for Hamiltonian path problem (taught by prof. Demlova during the course of Logic and Graphs — she
called it ‘metoda vétvi a mez{’).

http://schedulingzoo.lip6.fr/

Branch and bound (revision): The Branch and Bound algorithm is used to solve discrete
optimization problems [1]. This algorithm gradually constructs a tree of partial solutions which
are expanded further (branch). If B&B finds an infeasible partial solution or a partial solution
such that it is worse than the best found solution, the node with this partial solution is not
expanded (bound). Each node of the search tree corresponds to one partial solution and the
leaves represent a complete solution. The subtree can be eliminated if:

1. Tt does not contain any feasible solution.

2. It does not contain an optimal solution.

Basically, the first case implies the second case. However, it can be appropriate to consider them
separately for the algorithm construction.

Generally there are two main methods of the solution space searching: breadth-first search and
depth-first search. In our case, i.e., the application of the Branch and Bound algorithm in the
scheduling, it is advantageous to use the depth-first search since each obtained feasible solution
increases the probability of eliminating other parts of the tree without their complete search.

So what does Bratley’s algorithm do exactly? Well, it employs smart search over the possible per-
mutations of the tasks. It constructs a tree of partial solutions and prunes these, which are non-optimal.

Question: Why is it enough to use the permutations only, without the information about the
start times?®

2Answer: Permutation represents an order of tasks in the schedule. For a given permutation, we go left-to-right
and construct a schedule by setting a start time of a job ‘as soon as possible’. Clearly, it is not optimal to shift
any task to the right. Hence, we are able to reconstruct a full schedule given the order of the tasks. The only
remaining question is ‘which order is the optimal one’ — this is not a simple question; we need to enumerate all
possible permutations and see.

Now, let’s look at the permutation tree constructed by the Bratley’s algorithm (Figure 2).

#£children
0 n
/ \
Ty 13 T3 n-1
/N /N N
T, T DT DT T T n-2
NTT3 ThT3T, ToNhTs TT3Ty T3ThT, 13151 n-3

Figure 2: Example of a complete permutation tree for n = 3 tasks.

It can be seen, that the complete permutation tree has n! leaves. To evaluate them all would be very
inefficient. However, usually we do not need to do that. We might be able to prune some nodes before
expanding them further.

We can try to derive some pruning rules using the objective function or the tasks constraints. In
each node of the tree, we can compute a lower bound LB (based on the current partial solution) and
compare it to global upper bound UB (which is obtained from some feasible solution/approximation
algorithm /estimation). On the other hand, we can also prune the current node using the characteristics
of non-scheduled tasks, e.g., when some nonscheduled task would surely miss its deadline, it would be
meaningless to expand this node further.

Question: Which nodes can be pruned? Can you devise some simple rules, which might help
us??

Try to think about it now, the rules will be explained in the following text.

At each node, we will remember
¢ — length of the partial schedule,
V' — a set of non-scheduled tasks.
Now, we can write the rules:

1. Missed deadline

It might happen that unassigned task would miss its deadline when assigned to the current schedule,
if that is the case, prune this node. (It is meaningless to continue, because in the future, some task
would surely miss its deadline).

(3T, € V :max{c,7;} +p; > d;) = prune this node. (1)

2. Bound on the solution

We might have already found some feasible solution, which might not be optimal. However, we
can use its quality as an upper bound (UB). We can calculate lover bound (LB) of the current
solution and prune this node if LB > UB.

partial schedule 1%
[T [IT]
Join {75} LB

Figure 3: Visualization of the LB.

LB = max {c7 %ér‘g{rj}} + Z Dj (2)
T;eV
Note that we are basically relaxing on release times of the tasks in V' (except for the minimal one).

Then, the order of the tasks is not important and we basically solve (optimally) 1| — |Ciyax, Which
is a relaxation of the original problem.

Question: What to do if we do not have any feasible solution?®

%Answer: We can use UB = maijev{(ij}, but then the inequality must be strict (we cannot prune the
solution, where LB = UB since we do not have a feasible solution for current UB).

3. Decomposition

We might be able to detect, that the partial solution we have in the current node is optimal,
therefore it might not be necessary to backtrack.

(c< q{?ér‘l/{rj}) = do not backtrack. (3)

That is because tasks in V need to be scheduled, but cannot be scheduled sooner, and so tasks in
T\ V will not affect the final Cpax. We can start the algorithm again for tasks in V' and simply
concatenate the solution with the current partial solution of 7\ V.

2.3 Example

Let us have 4 tasks characterized by parameters given in Table 1.

T | pi r d;
T, [2 4 7
T | 1 1 5
52 1 6
i1 2 0 4

Table 1: Parameters of the tasks.

Exercise: Try to solve this instance of the problem by hand.®

%The solution tree will be shown on the following page.

The solution tree follows:

Tl /6 T2 / 2 T3 / 3
prune by (1) prune by (2) prune by (1) Ty / 2
T> missed deadline 246=8>7 Ty missed deadline /
T,T1 / 6 Ty T3 / 4

prune by (1) T4T2 / 3 prune by (2)

T5 missed deadline \ LB=7=UB
TyT5T / 6

prune by (1) TyT>T3 / 5

T3 missed deadline

Ty TT5Ty | 7

feasible solution
UB=T17

Figure 4: Solution to the example instance; nodes are labelled by the current partial permutation / c.

3 Assignment of HW4

Your task is to implement branch-and-bound algorithm for Bratley’s problem. To pass the evaluation,
you should implement all three elimination rules as discussed, otherwise your runtime might be too high.

3.1 Input/Output format

Your program will be called with two arguments: the first one is absolute path to input file and the
second one is the absolute path to output file which has to be created by your program.
Let n be the number of tasks. Then the input file has n + 1 lines and has the following form

n
pr m 6{1
p2 T2 do

One space is used as a separator between values on one line. All the values in the input file are

non-negative integers.

If the input instance is infeasible, then the output file consists of the single line containing —1. On the
other hand, if the input instance is feasible, then the output file consists of n lines and has the following
form

S1
52

Sn

where s; is the optimal start time of task 7;. All the values in the output file are integers.

Example 1
Input:

NN =N
[T TN
Do o N

Output:

O W N O,

Example 2
Input:

N~ N W
oD
NN N

Output:

-1

Summary

This time, we revised scheduling in general. Afterwards, we concentrated on a single AP hard problem.
Previously, we have designed an ILP model to solve the problem. Now, we came up with a specialized
algorithm based on a general branch-and-bound procedure. The practical understanding of the algorithm
will be demonstrated by solving the HW4.

References

[1] J. Blazewicz, Scheduling Computer and Manufacturing Processes. Springer, second ed., 2001.

[2] R. Graham, E. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Optimization and approximation
in deterministic sequencing and scheduling theory: a survey,” Annals of Discrete Mathematics, vol. 5,
pp. 287-326, 1979.

	Revision of scheduling
	Graham's notation

	Monoprocessor scheduling and Bratley's algorithm
	Problem statement
	Bratley's algorithm
	Example

	Assignment of HW4
	Input/Output format

