computable us uncomputable functions
\rightarrow mot eves function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ is computable
\rightarrow ever bit string can be mapped t_{0} a national member \mathbb{N} \rightarrow hence, set of all functions:
$f: \quad \mathbb{N} \rightarrow \mathbb{N}$
\rightarrow however, the set of all functions on maturel minmbels is hincountale:

Lo the reason is that interval $(0,1)$ corresponds to all functions
$g: \mathbb{N} \rightarrow\{0, \ldots, g\}, g(i)=$ " i-th digit of the member"

$$
\rightarrow e . g=0.78566 \ldots, g(1)=7, g(2)=8, g(3)=5, g(4)=6, g(5)=6, \ldots
$$

\rightarrow since $(0,1)$ is uncountable, we have that there arse man g functions f on matital numbers
\rightarrow on the other hand, there are only a countable number of algorithm $\mathrm{ms} /$ compertable functions:
2) an algorithm has finite description, thus representable by a finite number of bits \rightarrow representable as a mathial member.
\rightarrow thus number of algoorthons/comphitable functions \ll member of all problems

