
PAC Learning Model: Definition

Given a probability distribution P on X , a concept C and a hypothesis H,
define the error of H: err(H) = P(C△H) = P(c(x) ̸= h(x))

A formality: define also err(h) = err(H) (h being the description of H)

We say that an algorithm PAC-learns concept class C if for any C ∈ C, an
arbitrary distribution P on X , and arbitrary numbers 0 < ϵ, δ < 1, the
algorithm, which receives a poly(1/ϵ, 1/δ, n) number of i.i.d. examples
from P(X), outputs with probability at least 1− δ a hypothesis h such
that err(h) ≤ ϵ. If such an algorithm exists, we call C PAC-Learnable.

If an algorithm PAC-learns C and runs in poly(1/ϵ, 1/δ, n) time, we say it
PAC-learns C efficiently and we call C efficiently PAC-learnable.

Computational Learning Theory PAC Model 1 / 19

PAC Learning Conjunctions

Use the generalization algo (previous lecture) for PAC learning: provide m
examples to it, run it as if online, keep the last h.

Let Pic(z) be the prob. that literal z (z ∈
{
h1, h1, h2, . . . hn

}
) is

inconsistent with a random example drawn from P(X).

err(h) = P(at least one literal in h inconsistent) ≤
∑

z Pic(z)

Call z bad if Pic(z) ≥ ϵ
2n . So if h has no bad literals then

err(h) ≤
∑
z

ϵ

2n
= 2n

ϵ

2n
= ϵ

Computational Learning Theory PAC Model 2 / 19

PAC Learning Conjunctions

Prob. that a bad literal z “survived” (was consistent with) one random
example is

1− Pic(z) ≤ 1− ϵ

2n

Prob. that z survived m such i.i.d. examples is thus at most(
1− ϵ

2n

)m

So prob. that one of the 2n possible bad literals survived m i.i.d. examples
is at most

2n
(
1− ϵ

2n

)m
≤ 2ne−

mϵ
2n

because of the general inequality 1− x ≤ e−x for x ≥ 0.

Computational Learning Theory PAC Model 3 / 19

PAC Learning Conjunctions

To satisfy PAC-learning conditions, we need

2ne−
mϵ
2n < δ

after arrangements:

m ≥ 2n

ϵ

(
ln 2n + ln

1

δ

)
Thus m ≤ poly(1/ϵ, 1/δ, n) examples suffice to make err(h) ≤ ϵ with
probability at least 1− δ.

So the generalization algorithm PAC-learns conjunctions (efficiently - same
argument as in the mistake-bound framework).

Computational Learning Theory PAC Model 4 / 19

Mistake-Bound Learnability Implies PAC-Learnability

Any mistake-bound learner L can be transformed into a PAC-learner. Let
M ≤ poly(n) be the mistake bound of L.

Call L lazy if it changes its hypo h only following a mistake. If L is not
lazy, make it lazy (prevent changing h after correct decisions).

Run L on the example set but halt if any hypo h survives more than 1
ϵ ln

M
δ

consecutive examples. Output h.

Observe that this will terminate within m = M
ϵ ln M

δ examples. (Otherwise
more than M mistakes would be made.)

Computational Learning Theory PAC Model 5 / 19

Mistake-Bound Learnability Implies PAC-Learnability

Prob. that err(h) > ϵ is at most

M(1− ϵ)
1
ϵ
ln M

δ < Me−
ϵ
ϵ
ln M

δ = M
δ

M
= δ

Since M ≤ poly(n) (condition of MB learning), also

m =
M

ϵ
ln

M

δ
≤ poly(1/ϵ, 1/δ, n)

So all PAC-learning conditions satisfied: we have m ≤ poly(1/ϵ, 1/δ, n),
and err(h) ≤ ϵ with prob. at least 1− δ.

Computational Learning Theory PAC Model 6 / 19

PAC-Learning Implies Consistency

Although err(h) > 0 is allowed, the output h of a PAC-learner is necessarily
consistent with all the training examples (zero “training error”).

Assume that given training set { x1, x2, . . . xm }, the algo outputs h
inconsistent with some xj (1 ≤ j ≤ m).

Distribution P(x) and numbers ϵ, δ are arbitrary so set them such that

∏m
i=1 P(xi) > δ (implying that P(xj) > 0);

ϵ < P(xj) (can be done because P(xj) > 0)

So with prob. > δ the algo will output h such that err(h) ≥ P(xj) > ϵ, i.e.
it does not PAC-learn.

Computational Learning Theory PAC Model 7 / 19

Consistency + Polynomial ln |H| Imply PAC-Learning

An algorithm using hypothesis class H is C-consistent if, given an arbitrary
example set from an arbitrary concept C ∈ C, it returns a h ∈ H
consistent with the example set.

H ⊇ C is a necessary condition for C-consistency.

A C-consistent algorithm using H PAC-learns C if ln |H| ≤ poly(n). Why?

Prob. that a given bad h (err(h) > ϵ) survives (i.e., is consistent with) a
random example is at most (1− ϵ).

Computational Learning Theory PAC Model 8 / 19

Consistency + Polynomial ln |H| Imply PAC-Learning

Prob. that h survives m i.i.d. examples is at most (1− ϵ)m.

Prob. that one of the bad hypotheses h ∈ H survives is at most
|H|(1− ϵ)m ≤ |H|e−ϵm.

To make this smaller than δ, it suffices to set the number of examples to

m =
1

ϵ
ln

|H|
δ

which is ≤ poly(1/ϵ, 1/δ, n) iff ln |H| ≤ poly(n).

Compare this to the similar result in the mistake-bound model (Halving algorithm).

Computational Learning Theory PAC Model 9 / 19

Consistency + Polynomial VC(H) Imply PAC-Learning

Using VC(H), a bound can be established even for |H| = ∞:

With probability at least δ, no bad hypothesis h ∈ H survives m i.i.d.
examples where

m ≥ 8

ϵ

(
VC(H) ln

16

ϵ
+ ln

2

δ

)
(We omit the proof.)

Thus a C-consistent algorithm using H PAC-learns C if VC(H) ≤ poly(n).

For example, let C = half-planes in Rn. |H| = ∞ but
VC(H) = n + 1 ≤ poly(n).

Computational Learning Theory PAC Model 10 / 19

k-Decision Trees

(Binary) decision tree: a binary tree-graph

non-leaf vertices: binary variables

leafs: class indicators

Classification: go from root to leaf, path
according to truth-values of variables.

k-DT = dec. trees of max depth k

Like k-term DNF,

finding a consistent k-DT is NP-hard
(proof omitted).

k-DT thus cannot be PAC-learned
efficiently + properly.

Example:

v3

v5 1

1 0

0 1

0 1

3-Decision Tree

Computational Learning Theory PAC Model 11 / 19

PAC-Learning k-Decision Trees Efficiently

Every k-DT has an equivalent k-DNF:

For every path going from root to a 1 leaf, add to the DNF a
k-conjunction of all variables on the path (v3 ∨ v3 v5 for the example)

Thus
k-DT ⊆ k-DNF

and C = k-DT can be efficiently (but not properly) PAC-learned using
H = k-DNF.

Note that also
k-DT ⊆ k-CNF

Create a clause for each path to a 0 leaf (v3 ∨ v5 for the example)

Computational Learning Theory PAC Model 12 / 19

PAC-Learning k-Decision Trees Properly

We will show that lg |k-DT| ≤ poly(n). Denote ck = |k-DT|.

c1 = 2 (two options for the single vertex = leaf) so

lg c1 = 1 (1)

ck+1 = nc2k (n options for vertex, ck options for each of the 2
subtrees)

lg ck+1 = lg n + 2 lg ck (2)

(1) and (2) are a recursive formula for a geometric series in variable
lg ck = lg |k-DT|. Solution exponential in k but polynomial in n.

So C = k-DT can be properly (but not efficiently) PAC-learned by a
C-consistent algorithm.

Computational Learning Theory PAC Model 13 / 19

Inconsistent Learning

Returning a hypothesis consistent with the training set may not be
possible for reasons such as

H ⊉ C;
C is not known (‘agnostic learning’) so H ⊉ C cannot be excluded;

There is ‘noise’ in data so the training set may include the same
instance as both a positive and a negative example.

Define the training error êrr(h) as the proportion of training examples
inconsistent with h. êrr(h) is also called the empirical risk.

We are interested in the relationship btw. err(h) and êrr(h).

Computational Learning Theory Inconsistent Learning 14 / 19

Hoeffding Inequality

Hoeffding: Let { z1, z2, . . . , zm } be a set of i.i.d. samples from P(z) on
{ 0, 1 }. The probability that

∣∣P(1)− 1
m

∑m
i=1 zi

∣∣ > ϵ is at most 2e−2ϵ2m.

Let zi = 1 iff i.i.d. example xi is misclassified by h. So

P(1) = err(h)

1

m

m∑
i=1

zi = êrr(h)

Thus for a given h, |err(h)− êrr(h)| > ϵ with prob. at most 2e−2ϵ2m.

Computational Learning Theory Inconsistent Learning 15 / 19

Error Bound for Inconsistent Learning

For a finite H, the prob. that |err(h)− êrr(h)| > ϵ for some h ∈ H is at
most

|H|2e−2ϵ2m

We want to make this no greater than δ. Solving δ = |H|2e−2ϵ2m gives

ϵ =

√
1

m
ln

2|H|
δ

So with prob. at least 1− δ, the difference btw. err(h) and êrr(h) is at
most as above for all h ∈ H.

Dilemma: A large H allows to achieve a small êrr(h) but means a loose
bound on err(h).

Computational Learning Theory Inconsistent Learning 16 / 19

Sample Complexity for Inconsistent Learning

Solving δ = |H|2e−2ϵ2m instead for m gives

m =
1

2ϵ2
ln

2|H|
δ

which is thus a number of examples sufficient to make |err(h)− êrr(h)| ≤ ϵ
with prob. at least 1− δ for all h ∈ H.

m ≤ poly(1/ϵ, 1/δ, n) iff ln |H| ≤ poly(n)

Computational Learning Theory Inconsistent Learning 17 / 19

Error Bound for ERM

Assume the learner returns

h = arg min
h∈H

êrr(h)

This is called empirical risk minimization (ERM principle).

Let h∗ = argminh∈H err(h), i.e. h∗ is the best hypothesis.

Let further m = 1
2ϵ2

ln 2|H|
δ . Then with prob. at least 1− δ:

∀h ∈ H : err(h) ≤ êrr(h) + ϵ which we just proved

≤ êrr(h∗) + ϵ because h minimizes êrr

≤ err(h∗) + 2ϵ because êrr(h∗) ≤ err(h∗) + ϵ

Computational Learning Theory Inconsistent Learning 18 / 19

Bias-Variance Trade-Off

Put differently, with prob. at least 1− δ:

err(h) ≤ min
h∈H

err(h) + 2

√
1

2m
ln

2|H|
δ

Large H - large variance - small bias - first summand lower, second larger

Too large H: overfitting, too small H: underfitting

The more training data (m), the larger H can be ‘afforded’.

Computational Learning Theory Inconsistent Learning 19 / 19

	Computational Learning Theory
	Intro
	Mistake Bound Model
	PAC Model
	Inconsistent Learning

