
SMU: Lecture 1

(Intro to RL and Recap of MDPs)

Monday, February 14, 2022

(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential
errors are mine.)

1

Markov Decision Processes

(You’ve heard of them already and it is quite likely that you know them very well but they
are important for understanding where RL algorithms come from… that’s why we will

review them anyways)

2

Part 1: Markov Processes

3

Random Process (Not yet MP)

4

Random Process (Not yet MP)
• Let us have:

• a set of states , called the state space,S

5

Random Process (Not yet MP)
• Let us have:

• a set of states , called the state space,

• a random process is a sequence of random variables
 taking values from ,

S

X1, X2, X3, …, Xt, … S

6

Random Process (Not yet MP)
• Let us have:

• a set of states , called the state space,

• a random process is a sequence of random variables
 taking values from ,

• the state of the process at time is the value (outcome) of .

S

X1, X2, X3, …, Xt, … S

t Xt

7

Random Processes (Example)
• A simple example:

• Every represents a coin toss, i.e.

• Here, all the random variables are independent (not very interesting).

Xi Xi ∼ Bernoulli(0.5)

Markov Process (Not yet MDP)
• Let us have:

• a set of states , called the state space,

• a random process taking values from ,

• the state of the process at time is the value (outcome) of .

• Markov property:

•  
for all .

S

X1, X2, X3, …, Xt, … S

t Xt

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = s1] = P[Xt+1 = st+1 |Xt = st]
s1, s2, …st+1 ∈ S

The probability of transition to the next state does
not depend on how we got to the present state!

9

Markov Process (Not yet MDP)
• Let us have:

• a set of states , called the state space,

• a random process taking values from ,

• the state of the process at time is the value (outcome) of .

• Markov property:

•  
for all .

S

X1, X2, X3, …, Xt, … S

t Xt

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = s1] = P[Xt+1 = st+1 |Xt = st]
s1, s2, …st+1 ∈ S

The probability of transition to the next state does
not depend on how we got to the present state!

10

Markov Property
• Markov property will be exploited in RL algorithms that we will meet in the

next lectures. (So let us spend little bit of time with it.)

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = x1] = P[Xt+1 = st+1 |Xt = st]

History
In other words, what we are saying is that the state transition probability does
not depend on the history, just on the current state. Yet in other words: Future
is independent of the past given the present.

11

Markov Property
• Markov property will be exploited in RL algorithms that we will meet in the

next lectures. (So let us spend little bit of time with it.)

• What if a process is not Markov? Then we can make it Markov by
including more information in its state.

P[Xt+1 = st+1 |Xt = st, Xt−1 = st−1, …, X1 = x1] = P[Xt+1 = st+1 |Xt = st]

History
In other words, what we are saying is that the state transition probability does
not depend on the history, just on the current state. Yet in other words: Future
is independent of the past given the present.

12

Markov Property

Notation

• We will use the notation

 whenever there will be no risk of confusion what we mean by .

P[Xt+1 = s′ |Xt = s] = P(s′ |s)

P(. | .)

14

Notation

• We will use the notation

 whenever there will be no risk of confusion what we mean by .

P[Xt+1 = s′ |Xt = s] = P(s′ |s)

P(. | .)

15

Note on Stationarity

• Stationarity for all P[Xt+1 = s′ |Xt = s] = P[Xt′ +1 = s′ |Xt′
= s] t, t′

Non-Stationarity (Example)

• State space: S = {office, restaurant, home}.

• Time t … discrete with step ~ hour

• Usually will depend on t (time of the
day - most people go to the office in the morning.

P[Xt+1 = office |Xt = home]

Non-Stationarity (Example)

• State space: S = {office, restaurant, home}.

• Time t … discrete with step ~ hour

• Usually will depend on t (time of the
day - most people go to the office in the morning.

P[Xt+1 = office |Xt = home]

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

19

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

20

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

21

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

22

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

23

State Transition Matrix
• State transition probabilities can be written in the form of a state

transition matrix.

P[Xt+1 = s1]
P[Xt+1 = s2]

⋮
P[Xt+1 = sk]

=

P(s1 |s1) P(s2 |s1) … P(sk |s1)
P(s1 |s2) P(s2 |s2) … P(sk |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sk) P(s2 |sk) … P(sk |sk)

T
P[Xt = s1]
P[Xt = s2]

⋮
P[Xt = sk]

24

Example of a Markov Process I (1/3)
• We have a six-sided die 🎲

• The state space is .

• The “dynamics” are given as follows. If you are in a state
then through the die and let the new state be: 🎲 + “current state” mod 7.

S = {0,1,2,3,4,5,6}
i ∈ {0,1,…,6}

25

Example of a Markov Process I (1/3)
• We have a six-sided die 🎲

• The state space is .

• The “dynamics” are given as follows. If you are in a state
then through the die and let the new state be: 🎲 + “current state” mod 7.

S = {0,1,2,3,4,5,6}
i ∈ {0,1,…,6}

26

Example of a Markov Process I (2/3)
• We have a six-sided die 🎲

• The state space is .

• The “dynamics” are given as follows. If you are in a state
then through the die and let the new state be: 🎲 + “current state” mod 7.

• From this description, we can write down the transition probabilities:

S = {0,1,2,3,4,5,6}
i ∈ {0,1,…,6}

P(0 |0) = 0, P(1 |0) = 1
6 , P(2 |0) = 1

6 , …, P(6 |0) = 1
6

P(0 |1) = 1
6 , P(1 |1) = 0, P(2 |1) = 1

6 , …, P(6 |1) = 1
6

⋮ , ⋮ , ⋮ , ⋱ , ⋮
P(0 |6) = 1

6 , P(1 |6) = 0, P(2 |6) = 1
6 , …, P(6 |6) = 0

27

Example of a Markov Process I (3/3)

P =

0 1
6

1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0 1

6
1
6

1
6

1
6

1
6

1
6

1
6 0

28

Another Example 🐞 (1/2)

🐞

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

The ladybug moves left with probability 0.4, right with probability 0.4 and stays where it is with
probability 0.2, except for the borders (s1 and s5) where it stays with probability 0.6.

A sample episode starting from s3:

3,3,2,1,2,2,3,4,…

29

Another Example 🐞 (2/2)

🐞

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

P =

0.6 0.4 0 0 0
0.4 0.2 0.4 0 0
0 0.4 0.2 0.4 0
0 0 0.4 0.2 0.4
0 0 0 0.4 0.6

30

Part 2: Markov Reward
Processes

31

Markov Reward Process

🐞 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

Markov reward process = Markov process + Reward

32

Markov Reward Process

🐞 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

Markov reward process = Markov process + Reward

33

Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:

• A set of states .

• A transition model , which we also denote by .

• A reward function , which is the expected reward the
agent receives in state .

• A discount factor .

S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]

34

Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:

• A set of states .

• A transition model , which we also denote by .

• A reward function , which is the expected reward the
agent receives in state .

• A discount factor .

S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]

35

Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:

• A set of states .

• A transition model , which we also denote by .

• A reward function , which is the expected reward the
agent receives in state .

• A discount factor .

S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]

36

Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:

• A set of states .

• A transition model , which we also denote by .

• A reward function , which is the expected reward the
agent receives in state .

• A discount factor .

S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]

37

Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:

• A set of states .

• A transition model , which we also denote by .

• A reward function , which is the expected reward the
agent receives in state .

• A discount factor .

S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]

38

Markov Reward Process

🐞 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

Markov reward process = Markov process + Reward

For example:

R(s) =

0, s = 1
0, s = 2
0, s = 3
0, s = 4
10, s = 5 We expect that each time we visit s5, there will be ice cream

 (i.e. we are not running out of it).39

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

40

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

41

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

42

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .…
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4,

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

43

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

44

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

45

Return from an Episode
• Horizon:
• Number of time steps in an episode (which can also be infinite). We will

first assume infinite horizons (they are easier because they will lead to
stationary, i.e. time-independent, policies!).

• Return :
• Given: An episode .
• Compute: Return = discounted sum of rewards from time .

• As a formula:

 

Gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi

46

Return (Random Variable)
• What we had on the previous slide was return from one specific sampled

episode.

• Next we define return of a Markov reward process as a random variable
(it is important to understand the distinction between the two):

 Gt = R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … =
∞

∑
i=0

R(Xt+i) ⋅ γi

47

Return (Random Variable)
• What we had on the previous slide was return from one specific sampled

episode.

• Next we define return of a Markov reward process as a random variable
(it is important to understand the distinction between the two):

 Gt = R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … =
∞

∑
i=0

R(Xt+i) ⋅ γi

48

Note: Discount Factor
• Honestly, the discount factor and how it is used makes a lot of things mathematically

convenient. (You will see in a moment or maybe you remember it from other courses.)

• It also makes the return finite even for problems with infinite horizon.

• But the discount also makes sense practically — the same reward today is better
than tomorrow.

• Special cases:

• : only immediate reward counts.

• : future rewards matter as much as present rewards.

γ = 0

γ = 1

49

Note: Discount Factor
• Honestly, the discount factor and how it is used makes a lot of things mathematically

convenient. (You will see in a moment or maybe you remember it from other courses.)

• It also makes the return finite even for problems with infinite horizon.

• But the discount also makes sense practically — the same reward today is better
than tomorrow.

• Special cases:

• : only immediate reward counts.

• : future rewards matter as much as present rewards.

γ = 0

γ = 1

50

(State) Value Function
• Definition:

It seems from this definition that should depend on . But is that really
the case? Think of the definition of and of the Markov property (and
stationarity of MRP)! Indeed, can be anything and the value function of a
state will not change.

• Intuition: Value function is the expected return when starting from
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s

51

(State) Value Function
• Definition:

It seems from this definition that should depend on . But is that really
the case? Think of the definition of and of the Markov property (and
stationarity of MRP)! Indeed, can be anything and the value function of a
state will not change.

• Intuition: Value function is the expected return when starting from
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s

52

(State) Value Function
• Definition:

It seems from this definition that should depend on . But is that really
the case? Think of the definition of and of the Markov property (and
stationarity of MRP)! Indeed, can be anything and the value function of a
state will not change.

• Intuition: Value function is the expected return when starting from
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s

53

(State) Value Function
• Definition:

It seems from this definition that should depend on . But is that really
the case? Think of the definition of and of the Markov property (and
stationarity of MRP)! Indeed, can be anything and the value function of a
state will not change.

• Intuition: Value function is the expected return when starting from
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s

54

(State) Value Function
• Definition:

It seems from this definition that should depend on . But is that really
the case? Think of the definition of and of the Markov property (and
stationarity of MRP)! Indeed, can be anything and the value function of a
state will not change.

• Intuition: Value function is the expected return when starting from
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s) t
Gt

t
s

V(s)
s

55

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

56

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

57

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

58

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

59
𝔼[R(Xt) |Xt = s] = 𝔼[R(s)] = R(s)

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

60
𝔼[R(Xt) |Xt = s] = 𝔼[R(s)] = R(s)

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

61
𝔼[R(Xt) |Xt = s] = 𝔼[R(s)] = R(s)

Computing Value Function (1/3)

  
 

 
 

 

 
.

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

= R(s) + γ𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt = s] =

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ 𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′]

= R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

62
𝔼[R(Xt+1) + γ ⋅ R(Xt+2) + … |Xt+1 = s′] = V(s′)

Computing Value Function (2/3)

63

 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R

Computing Value Function (2/3)

64

 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R

 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R

Computing Value Function (2/3)

65

 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R

Computing Value Function (2/3)

66

Computing Value Function (2/3)

67

 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R

Computing Value Function (2/3)
 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R
68

Computing Value Function (2/3)
 for all , is nothing else then a system of

linear equation, which we can write in the matrix form for finite as:

Unfortunately, solving the system directly is slow in practice. We will
describe how to solve similar problems for MDPs (hence also for MRPs)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′) s ∈ S

S

V(s1)
V(s2)

⋮
V(sn)

=

R(s1)
R(s2)

⋮
R(sn)

+ γ

P(s1 |s1) P(s2 |s1) … P(sn |s1)
P(s1 |s2) P(s2 |s2) … P(sn |s2)

⋮ ⋮ ⋱ ⋮
P(s1 |sn) P(s2 |sn) … P(sn |sn)

=P

V(s1)
V(s2)

⋮
V(sn)

(I − γP)V = R
69

When , the matrix is invertible.γ < 1 I − γP

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

70

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

71

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

72

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

73

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

74

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

75

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

76

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

77

Computing Value Function (3/3)
• An alternative is to use an iterative algorithm (exploiting dynamic programming)*

Set for all

For

For :

if converged** (with some tolerance) then return

*This is nothing else than an iterative method for solving linear equations but it has a
nicer interpretation of you think of it in terms of the MRP.

**For instance, we can use .

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vk(s) = R(s) + γ ⋅ ∑

s′ ∈S

P(s′ |s) ⋅ Vk−1(s′)

Vk

∥Vk − Vk−1∥∞ ≤ ε

Bellman update

78

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = R(s1)
⏟

=0

+ γ ⋅ P(s1 |s1)

=1

⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = R(s2)
⏟

=0

+ γ ⋅ (P(s1 |s2)

=0.4

⋅ V(s1) + P(s2 |s2)

=0.2

⋅ V(s2) + P(s3 |s2)

=0.4

⋅ V(s3))

V(s3) = R(s3)
⏟

=0

+ γ ⋅ (P(s3 |s3)

=0.2

⋅ V(s3) + P(s4 |s3)

=0.8

⋅ V(s4))

V(s4) = R(s4)
⏟

=10

+ γ ⋅ (P(s3 |s4)

=0.4

⋅ V(s3) + P(s4 |s4)

=0.6

⋅ V(s4))

γ = 0.5

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = R(s1)
⏟

=0

+ γ ⋅ P(s1 |s1)

=1

⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = R(s2)
⏟

=0

+ γ ⋅ (P(s1 |s2)

=0.4

⋅ V(s1) + P(s2 |s2)

=0.2

⋅ V(s2) + P(s3 |s2)

=0.4

⋅ V(s3))

V(s3) = R(s3)
⏟

=0

+ γ ⋅ (P(s3 |s3)

=0.2

⋅ V(s3) + P(s4 |s3)

=0.8

⋅ V(s4))

V(s4) = R(s4)
⏟

=10

+ γ ⋅ (P(s3 |s4)

=0.4

⋅ V(s3) + P(s4 |s4)

=0.6

⋅ V(s4))

γ = 0.5

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = R(s1)
⏟

=0

+ γ ⋅ P(s1 |s1)

=1

⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = R(s2)
⏟

=0

+ γ ⋅ (P(s1 |s2)

=0.4

⋅ V(s1) + P(s2 |s2)

=0.2

⋅ V(s2) + P(s3 |s2)

=0.4

⋅ V(s3))

V(s3) = R(s3)
⏟

=0

+ γ ⋅ (P(s3 |s3)

=0.2

⋅ V(s3) + P(s4 |s3)

=0.8

⋅ V(s4))

V(s4) = R(s4)
⏟

=10

+ γ ⋅ (P(s3 |s4)

=0.4

⋅ V(s3) + P(s4 |s4)

=0.6

⋅ V(s4))

γ = 0.5

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = R(s1)
⏟

=0

+ γ ⋅ P(s1 |s1)

=1

⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = R(s2)
⏟

=0

+ γ ⋅ (P(s1 |s2)

=0.4

⋅ V(s1) + P(s2 |s2)

=0.2

⋅ V(s2) + P(s3 |s2)

=0.4

⋅ V(s3))

V(s3) = R(s3)
⏟

=0

+ γ ⋅ (P(s3 |s3)

=0.2

⋅ V(s3) + P(s4 |s3)

=0.8

⋅ V(s4))

V(s4) = R(s4)
⏟

=10

+ γ ⋅ (P(s3 |s4)

=0.4

⋅ V(s3) + P(s4 |s4)

=0.6

⋅ V(s4))

γ = 0.5

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

V(s1) = 0, V(s2) ≈ 1.62, V(s3) ≈ 7.27, V(s4) ≈ 16.36
By solving the set of equations directly:

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

V(s1) = 0, V(s2) ≈ 1.62, V(s3) ≈ 7.27, V(s4) ≈ 16.36
By solving the set of equations directly:

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

V(s1) = 0, V(s2) ≈ 1.62, V(s3) ≈ 7.27, V(s4) ≈ 16.36
By solving the set of equations directly:

Value Function (Example)

🐞 🍦

1 2 3 4

1 0.2 0.2 0.6

0.4

0.4

0.4

0.8

REWARD = 10!

V(s1) = 0.5 ⋅ V(s1)

V(s) = R(s) + γ ⋅ ∑
s′ ∈S

P(s′ |s) ⋅ V(s′)

V(s2) = 0.5 ⋅ (0.4 ⋅ V(s1) + 0.2 ⋅ V(s2) + 0.4 ⋅ V(s3))

V(s3) = 0.5 ⋅ (0.2 ⋅ V(s3) + 0.8 ⋅ V(s4))

V(s4) = 10 + 0.5 ⋅ (0.4 ⋅ V(s3) + 0.6 ⋅ V(s4))

γ = 0.5

V(s1) = 0, V(s2) ≈ 1.62, V(s3) ≈ 7.27, V(s4) ≈ 16.36
By solving the set of equations directly:

Value Function (Iterative Solution)
Iteration 0:

V0 =

0
0
0
0

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 1:

V1 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
0

=

0
0
0
10

Value Function (Iterative Solution)
Iteration 2:

V2 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
10

=

0
0

0.4
13

Value Function (Iterative Solution)
Iteration 2:

V2 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0
0
10

=

0
0

0.4
13

Value Function (Iterative Solution)
Iteration 3:

V3 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0

0.4
13

=

0
0.08
5.24
13.98

Value Function (Iterative Solution)
Iteration 4:

V4 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
0.08
5.24
13.98

=

0
1.056
6.116
15.242

Value Function (Iterative Solution)
Iteration 5:

V5 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.056
6.116
15.242

=

0
1.3288
6.7084
15.7958

Value Function (Iterative Solution)
Iteration 6:

V6 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.3288
6.7084
15.7958

=

0
1.47456
6.98916
16.08042

Value Function (Iterative Solution)
Iteration 7:

V7 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.47456
6.98916
16.08042

=

0
1.545288
7.131084
16.221958

Value Function (Iterative Solution)
Iteration 8:

V8 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.545288
7.131084
16.221958

=

0
1.5807456
7.2018916
16.2928042

Value Function (Iterative Solution)
Iteration 8:

V8 =

0
0
0
10

+ 0.5

1 0 0 0
0.4 0.2 0.4 0
0 0 0.2 0.8
0 0 0.4 0.6

0
1.545288
7.131084
16.221958

=

0
1.5807456
7.2018916
16.2928042

|V8 − V∞ | ≈

0
0.035
0.071
0.071

Part 3: Markov Decision
Processes

104

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

105

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

106

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

107

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

108

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

109

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

110

Markov Decision Process
• Markov decision process = Markov reward process + Actions
• An MDP is given by:

• A set of states .

• A set of actions .

•
A transition model

• A reward , i.e. the expected reward
that the agent receives when performing action in state .

• Discount factor .

S
A

P(Xt+1 = s′ |Xt = s, At = a) = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ

111

Transition Model
• A bit of intuition about :

• Why is this random and not deterministic? Imagine that our ladybug is
drunk and if it wants to go left, it actually goes right with some
probability. Or imagine that the action is to throw a die in a game or pick
a card from a deck…

P(Xt+1 = s′ |Xt = s, At = a)

🐞 🍦

1 2 3 4 5

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

REWARD!

🍻🍻🍻

🃒🃒 🎲🎲

112

MRP vs MDP• Compare:

MRP

Dynamics:

Return:

P[Xt+1 = s′ |Xt = s]

R(s) = 𝔼[Rt |Xt = s]

MDP

Dynamics:

Return:

.

P[Xt+1 = s′ |At = a, Xt = s]

R(s, a) = 𝔼[Rt |Xt = s, At = a]

113

MRP vs MDP• Compare:

MRP

Dynamics:

Return:

P[Xt+1 = s′ |Xt = s]

R(s) = 𝔼[Rt |Xt = s]

MDP

Dynamics:

Return:

.

P[Xt+1 = s′ |At = a, Xt = s]

R(s, a) = 𝔼[Rt |Xt = s, At = a]

114

MRP vs MDP• Compare:

MRP

Dynamics:

Return:

P[Xt+1 = s′ |Xt = s]

R(s) = 𝔼[Rt |Xt = s]

MDP

Dynamics:

Return:

.

P[Xt+1 = s′ |At = a, Xt = s]

R(s, a) = 𝔼[Rt |Xt = s, At = a]

115

Policy
• Policy determines which action to take in each state .

• It can be either deterministic or random — that is also why policy will not
simply be a function from states to actions.

• We define policy: .

• Example (policy for our ant 🐜):

•

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…

116

Policy
• Policy determines which action to take in each state .

• It can be either deterministic or random — that is also why policy will not
simply be a function from states to actions.

• We define policy: .

• Example (policy for our ladybug 🐞):

•

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…

117

Policy
• Policy determines which action to take in each state .

• It can be either deterministic or random — that is also why policy will not
simply be a function from states to actions.

• We define policy: .

• Example (policy for our ladybug 🐞):

•

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…

118

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
119

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
120

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
121

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
122

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
123

MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a

corresponding MRP.

• Formally:

• Given an MDP , we turn it into an MRP where

 *

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
124

State Value Function of MDP (1/3)

Vπ(s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ(s′)

125

State Value Function of MDP (1/3)

Vπ(s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ(s′)

126

State Value Function of MDP (1/3)

Vπ(s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ(s′)

127

for all states s

State Value Function of MDP (2/3)

Vπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a) + γ ⋅ ∑
s′ ∈S

∑
a∈A

π(a |s) ⋅ P(s′ |s, a) ⋅ Vπ(s′)

Pπ(s′ |s)Rπ(s)

= =

128

State Value Function of MDP (3/3)

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]

129

(Bellman equation for MDP)

MDP Policy Evaluation - Iteration (1/3)
• Since we reduced MDP + policy to the MRP , we

can use the same iterative method for computing the value function .

Set for all

For

For :

if converged (with some tolerance) then return

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vπ

k (s) = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ Vπ
k−1(s′)

Vπ
k

130

MDP Policy Evaluation - Iteration (2/3)
• Since we reduced MDP + policy to the MRP , we

can use the same iterative method for computing the value function .

Set for all

For

For :

if converged (with some tolerance) then return

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S
Vπ

k (s) = ∑
a∈A

π(a |s) ⋅ R(s, a) + γ ⋅ ∑
s′ ∈S

∑
a∈A

π(a |s) ⋅ P(s′ |s, a) ⋅ Vπ
k−1(s′)

Vk

Pπ(s′ |s)Rπ(s)
= =

131

MDP Policy Evaluation - Iteration (3/3)
• Since we reduced MDP + policy to the MRP , we

can use the same iterative method for computing the value function .

Set for all

For

For :

if converged (with some tolerance) then return

(A, S, P, R, γ) (S, Pπ, Rπ, γ)
Vπ(s)

V0(s) = 0 s ∈ S
k = 1,…

∀s ∈ S

Vπ
k (s) = ∑

a∈A

π(a |s) ⋅ (R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ
k−1(s′))

Vk

132

Part 4: MDP Control

133

MDP Control: What is it?
• We want to find a policy that will maximize the value function for all

states (i.e. we want to learn to behave optimally in every state).

• Formally:

• One can show that:
• A unique optimal value function exists, but… the optimal policy does

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal

policy (there may also be a non-deterministic optimal policy) and the
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)

134

MDP Control: What is it?
• We want to find a policy that will maximize the value function for all

states (i.e. we want to learn to behave optimally in every state).

• Formally:

• One can show that:
• A unique optimal value function exists, but… the optimal policy does

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal

policy (there may also be a non-deterministic optimal policy) and the
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)

135

MDP Control: What is it?
• We want to find a policy that will maximize the value function for all

states (i.e. we want to learn to behave optimally in every state).

• Formally:

• One can show that:
• A unique optimal value function exists, but… the optimal policy does

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal

policy (there may also be a non-deterministic optimal policy) and the
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)

136

MDP Control: What is it?
• We want to find a policy that will maximize the value function for all

states (i.e. we want to learn to behave optimally in every state).

• Formally:

• One can show that:
• A unique optimal value function exists, but… the optimal policy does

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal

policy (there may also be a non-deterministic optimal policy) and the
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)

137

MDP Control: What is it?
• We want to find a policy that will maximize the value function for all

states (i.e. we want to learn to behave optimally in every state).

• Formally:

• One can show that:
• A unique optimal value function exists, but… the optimal policy does

not have to be unique.

• For an infinite horizon problem, there exists a deterministic optimal

policy (there may also be a non-deterministic optimal policy) and the
policy is stationary (this is why it is convenient to work with infinite-
horizon MDPs).

π*

π*(s) = arg max
π

Vπ(s)

138

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

139

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

140

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

141

Vπ
k (s) = Rπ(s) + γ ⋅ ∑

s′ ∈S

Pπ(s′ |s) ⋅ Vπ
k−1(s′)

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

142

Vπ
k (s) = Rπ(s) + γ ⋅ ∑

s′ ∈S

Pπ(s′ |s) ⋅ Vπ
k−1(s′)

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

143

Vπ
k (s) = Rπ(s) + γ ⋅ ∑

s′ ∈S

Pπ(s′ |s) ⋅ Vπ
k−1(s′)

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

144

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

145

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

146

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

147

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

148

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

149

Policy Improvement Step
• Given: An MDP and a policy that we want to improve (if possible).

• DO:

• For all , compute as defined on the previous slide, i.e.
.

• Compute new policy for all :

πi

s ∈ S Qπi(s, a)
Qπi(s, a) = R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)

s ∈ S

πi+1(s) = arg max
a∈S

Qπi(s, a)

Here, we use the fact that our policy is deterministic
for simpler notation (treating policy as a function).
Using our previous notation we could write:

 π(a |s) = {1 if a = arg maxa∈A Qπi(s, a)
0 otherwise

150

Policy Iteration

Initialize randomly.
DO

 .

 .

WHILE

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi = Compute the state-value function, evaluating πi

πi+1 = Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

151

Policy Iteration

Initialize randomly.
DO

 .

 .

WHILE

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi = Compute the state-value function, evaluating πi

πi+1 = Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

152

Value Iteration
• Value iteration is another way to find the optimal policy.

• Instead of searching for the 
optimal policy as before 
(i.e.), 

we will be looking directly 
for the optimal value function: 

.

π*(s) = arg max
π

Vπ(s)

V*(s) = max
π

Vπ(s)

153

Value Iteration
• Value iteration is another way to find the optimal policy.

• Instead of searching for the 
optimal policy as before 
(i.e.), 

we will be looking directly 
for the optimal value function: 

.

π*(s) = arg max
π

Vπ(s)

V*(s) = max
π

Vπ(s)

154

Value Iteration (Bellman Equation)
• Recall we had:

• But now we do not have a policy, so we will have some without specifying (but
any such induces some policy).

• We can define Bellman backup operator (the operator will be applied on
functions!):

• Bellman Backup Operator for Value Function:
• Notation: denotes applying (Bellman backup).

• is a new value function, Bellman backup improves the old value function (if
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]
V π

V π
B(.)

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
B[V]

Value Iteration (Bellman Equation)
• Recall we had:

• But now we do not have a policy, so we will have some without specifying (but
any such induces some policy).

• We can define Bellman backup operator (the operator will be applied on
functions!):

• Bellman Backup Operator for Value Function:
• Notation: denotes applying (Bellman backup).

• is a new value function, Bellman backup improves the old value function (if
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]
V π

V π
B(.)

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
B[V]

Value Iteration (Bellman Equation)
• Recall we had:

• But now we do not have a policy, so we will have some without specifying (but
any such induces some policy).

• We can define Bellman backup operator (the operator will be applied on
functions!):

• Bellman Backup Operator for Value Function:
• Notation: denotes applying (Bellman backup).

• is a new value function, Bellman backup improves the old value function (if
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]
V π

V π
B(.)

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
B[V]

Value Iteration (Bellman Equation)
• Recall we had:

• But now we do not have a policy, so we will have some without specifying (but
any such induces some policy).

• We can define Bellman backup operator (the operator will be applied on
functions!):

• Bellman Backup Operator for Value Function:
• Notation: denotes applying (Bellman backup).

• is a new value function, Bellman backup improves the old value function (if
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]
V π

V π
B(.)

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
B[V]

Value Iteration (Bellman Equation)
• Recall we had:

• But now we do not have a policy, so we will have some without specifying (but
any such induces some policy).

• We can define Bellman backup operator (the operator will be applied on
functions!):

• Bellman Backup Operator for Value Function:
• Notation: denotes applying (Bellman backup).

• is a new value function, Bellman backup improves the old value function (if
not yet optimal).

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)]
V π

V π
B(.)

B[V] B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
B[V]

Value Iteration
Set

Initialize for all

DO:

WHILE

• To extract an optimal policy, we can extract a deterministic (not necessarily
unique) policy: 

.

k = 1
V0(s) = 0 s ∈ S

Vk(s) = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ Vk−1(s′)]
∥Vk − Vk−1∥∞ ≥ ε

π(s) = arg max
a∈A [R(s, a) + ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
160

Bellman backup B[V]

Part 5: Proofs

Outline

1. Why value iteration converges to an optimal value function,

2. Why policy iteration converges to an optimal policy.

A Bit More on Bellman Backup Operators
• This slide is about terminology (which is also important, after all, we want

to understand others!).

• Bellman Backup :

• Bellman Backup for policy evaluation:

B

B[V] = max
a∈A [R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)]
Bπ

Bπ[V(s)] = Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′)

Why Value Iteration and Value Evaluation Converge

• Definition (Contractive Operator): An operator in a space with norm is a
contractive operator if there exists such that, for all , it holds:

.

• By Banach’s Fixed-Point Theorem, we have that any such contractive operator
has exactly one fixed point.

• So all we need to do to show that VI and VE converge, is to show that the
respective Bellman backup operators and are contraction operators.

T[.] ∥.∥
0 ≤ α < 1 V, V′

∥T[V] − T[V′]∥ ≤ α ⋅ ∥V − V′ ∥

B[.] Bπ[.]

 is a contractive operatorB[.]
Infinity norm: .

.

∥V − V′ ∥ = max
s∈S

|V(s) − V′ (s) |

∥B(V) − B(V′)∥∞ = max
s∈S

max
a∈A (R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′)) − max
a′ ∈A (R(s, a′) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a′) ⋅ V′ (s′))

≤ max
s∈S

max
a∈A (R(s, a) + γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′) − R(s, a) − γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ V′ (s′))
= max

s∈S
max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′) − γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ V′ (s′)) = max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ (V(s′) − V′ (s′)))

≤ max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ V(s′) − V′ (s′)) ≤ max
s∈S

max
a∈A (γ ⋅ ∑

s′ ∈S

P(s′ |s, a) ⋅ max
s′ ′ ∈S

V(s′ ′) − V′ (s′ ′))
≤ γ ⋅ max

s′ ′ ∈S
|V(s′ ′) − V′ (s′ ′) | = γ ⋅ ∥V − V′ ∥∞

So Value Iteration Converges…
• …but does it converge to the right thing (i.e. to the optimal)?

Notation:

Proof (that it does):

 Claim 1: .

 Claim 2: .

 Set .

 Then .

 So for , value iteration converges to from any initialization .

V*
B(n)[V] = B[B[…B[V]

n−times

…]]]

B[V*] = V*
∥B(n)[V] − B(n)[V′]∥∞ ≤ γn ⋅ ∥V − V′ ∥∞

V′ = V*
∥B(n)[V] − V*∥∞ = ∥B(n)[V] − B(n)[V*]∥∞ ≤ γn ⋅ ∥V − V′ ∥∞

γ < 1 V* V

Now the Same for Value Evaluation…. (is a
contractive operator)

Bπ[.]

.

∥Bπ(V) − Bπ(V′)∥∞ = max
s∈S

Rπ(s) + γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′) − Rπ(s) − γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′)

= max
s∈S

γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V(s′) − γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′) = γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ V(s′) − ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′)

= γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ V(s′) − ∑
s′ ∈S

Pπ(s′ |s) ⋅ V′ (s′) = γ ⋅ max
s∈S ∑

s′ ∈S

Pπ(s′ |s) ⋅ (V(s′) − V′ (s′))

≤ γ ⋅ ∑
s′ ∈S

Pπ(s′ |s) ⋅ max
s∈S

V(s′) − V′ (s′) = γ ⋅ max
s∈S

V(s′) − V′ (s′) ≤ γ ⋅ ∥V − V′ ∥∞

The rest of the proof is completely analogical to the proof for value iteration…

Recall: Policy Iteration

Initialize randomly.
DO

 .

 .

WHILE

Policy iteration finds the globally optimal policy!

i = 0
π0

Vπi = Compute the state-value function, evaluating πi

πi+1 = Policy improvement of πi

i = i + 1
∥πi − πi−1∥1 > 0 /* if policy changed */

168

Why It Works
Note that:

We have

Vπi(s) ≤ max
a∈A [R(s, a) + γ∑

s′ ∈S

P(s′ |s, a) ⋅ Vπi(s′)] = max
a∈A

Qπi(s, a)

Vπi(s) ≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ Vπi(s′)

≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ max
a∈A

Qπi(s′ , a)

≤ R(s, πi+1(s)) + γ∑
s′ ∈S

P(s′ |s, πi+1(s)) ⋅ [R(s′ , πi+1(s′)) + γ ∑
s′ ′ ∈S

P(s′ ′ |s′ , πi+1(s′)) ⋅ Vπi(s′ ′)]
⋮ (keep repeating...)

≤ Vπi+1(s)
169

Next Lecture…

• A bit more about MDPs with finite horizons

• Starting reinforcement learning (right now we have the MDP, in RL we will
not have it and yet we will try to learn to act optimally!)

A Bit More About Finite
Horizon’s

Non-Stationarity
• One complication with finite horizons is that optimal policies may be non-

stationary, which means that the optimal action to take in a state
may depend on the number of time steps remaining until the end of the
episode.

s ∈ S

Value Iteration for Finite Horizon (1/2)
• Value iteration works also for finite horizons. Recall this slide from Prof.

Emma Brunskill

Value Iteration for Finite Horizon (1/2)
• Value iteration works also for finite horizons. Recall this slide from Prof.

Emma Brunskill

Reinforcement Learning (RL)
• RL: Learning to make sequences of decisions to maximize rewards.

• This lecture:

• Motivation

• Review of Markov Decision Processes

Some Cool Applications

176

OpenAI’s Hide and Seek

Paper: Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell,
Bob McGrew, Igor Mordatch: Emergent Tool Use From Multi-Agent Autocurricula.
ICLR 2020

Video: https://www.youtube.com/embed/kopoLzvh5jY177

https://dblp.org/pid/165/1360.html
https://dblp.org/pid/217/2925.html
https://dblp.org/pid/44/3684.html
https://dblp.org/pid/215/4858.html
https://dblp.org/pid/48/9529.html
https://dblp.org/pid/21/17.html
https://dblp.org/db/conf/iclr/iclr2020.html#BakerKMWPMM20
https://www.youtube.com/embed/kopoLzvh5jY
https://www.youtube.com/watch?v=kopoLzvh5jY

DeepMind’s Atari Games

Paper: Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... &
Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540),
529-533.

Video: https://www.youtube.com/watch?v=TmPfTpjtdgg178

https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=TmPfTpjtdgg

Robots Learning to Walk

Article: https://www.technologyreview.com/2021/04/08/1022176/boston-dynamics-cassie-
robot-walk-reinforcement-learning-ai/
Video: https://www.youtube.com/watch?v=goxCjGPQH7U&t=52s

179

https://www.youtube.com/watch?v=goxCjGPQH7U
https://www.youtube.com/watch?v=goxCjGPQH7U&t=52s

Even Goldfish Can Do Some
Interesting Learning and Generalize 🐡

https://www.sciencedirect.com/science/article/pii/S0166432821005994180

