
SMU: Lecture 2 

(Model-Free Policy Evaluation in RL + 
Intro to Model-Free Control)

Monday, February 27, 2023


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)



Plan for The First Part

• Policy evaluation when we do not know the model (neither the state-
transition probabilities, nor the reward functions).


• Two kinds of methods today (there are more out there):


• Monte-Carlo Policy Evaluation


• Temporal-Difference Learning




Part 0: Reminder from Last 
Lecture



Markov Reward Process
Markov reward process = Markov process + Reward

Formally, MRP is given by:


• A set of states .


• A transition model , which we also denote by .


• A reward function , which is the expected reward the 
agent receives in state .


• A discount factor .


S

P[Xt+1 = s′ |Xt = s] P(s′ |s)

R(s) = 𝔼[Rt |Xt = s]
s, (s ∈ S)

γ ∈ [0; 1]
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Return from an Episode
• Horizon: 
• Number of time steps in an episode (which can also be infinite). We will 

first assume infinite horizons (they are easier because they will lead to 
stationary, i.e. time-independent, policies!).


• Return : 
• Given: An episode . 
• Compute: Return  = discounted sum of rewards from time .

• As a formula:  

 

gt
s1, s2, s3, s4, …, sH

gt t

gt = R(st) + R(st+1) ⋅ γ + R(st+2) ⋅ γ2 + … = R(st) + ∑
i=1

R(st+i) ⋅ γi
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Markov Reward Process

🐞 🍦
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REWARD!

Markov reward process = Markov process + Reward

For example:

R(s) =

0, s = 1
0, s = 2
0, s = 3
0, s = 4
10, s = 5 We expect that each time we visit s5, there will be ice cream 

 (i.e. we are not running out of it).6



Episode (An Example)

🐞 🍦
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Time: 

Current state: , Current reward: 

Episode: 

t = 1
s1 = 3 r1 = 0
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Episode (An Example)

🐞 🍦
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Time: 

Current state: , Current reward: 

Episode: 

t = 2
s2 = 4 r2 = 0

3, 4



Episode (An Example)

🐞 🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Time: 

Current state: , Current reward: 

Episode: 

t = 3
s3 = 4 r3 = 0

3, 4, 4



Episode (An Example)

🐞🍦
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Time: 

Current state: , Current reward: 

Episode: 

t = 4
s4 = 5 r4 = 10

3, 4, 4, 5



Episode (An Example)

🐞🍦

1 2 3 4 5
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Time: 

Current state: , Current reward: 

Episode: 

t = 5
s4 = 5 r5 = 10

3, 4, 4, 5, 5



Episode (An Example)

🐞🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Time: 

Current state: 

Episode: 


t = 5
s4 = 5

3, 4, 4, 5, 5
g1 = 0 + 0 ⋅ 0.5 + 0 ⋅ 0.52 + 10 ⋅ 0.53 + 10 ⋅ 0.54 = 1.875



Episode (An Example)

🐞🍦

1 2 3 4 5

0.6 0.2 0.2 0.2 0.6

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

Time: 

Current state: 

Episode: 


t = 5
s4 = 5

3, 4, 4, 5, 5
g3 = 0 + 10 ⋅ 0.5 + 10 ⋅ 0.52 = 7.5



Return (Random Variable)
• What we had on the previous slide was return from one specific sampled 

episode.


• Next we define return of a Markov reward process as a random variable 
(it is important to understand the distinction between the two):


         Gt = R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … =
∞

∑
i=0

R(Xt+i) ⋅ γi
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Markov Decision Process
• Markov decision process = Markov reward process + Actions 
• An MDP is given by: 

• A set of states .


• A set of actions .


•
A transition model 


• A reward , i.e. the expected reward 
that the agent receives when performing action  in state .


• Discount factor .

S
A

P[Xt+1 = s′ |Xt = s, At = a] = P(s′ |s, a)

notation
R(s, a) = 𝔼[Rt |Xt = s, At = a]

a s
γ
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Policy
• Policy determines which action to take in each state . 


• It can be either deterministic or random — that is also why policy will not 
simply be a function from states to actions.


• We define policy: .


• Example (policy for our ladybug 🐞):


• 

•

s

π(a |s) = P(At = a |Xt = s)

A = {left, right}
π(left |1) = 0, π(right |1) = 1, π(left |2) = 0.5, π(right |1) = 0.5,…
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MDP+Policy = MRP
• When we specify a policy for a given MDP, we are effectively turning the MDP into a 

corresponding MRP.


• Formally: 

• Given an MDP , we turn it into an MRP  where


 *


 

(A, S, P, R, γ) (S, Pπ, Rπ, γ)

Pπ(s′ |s) = ∑
a∈A

π(a |s) ⋅ P(s′ |s, a)

Rπ(s) = ∑
a∈A

π(a |s) ⋅ R(s, a)

* In the more verbose notation: .
Pπ[Xt+1 = s′ |Xt = s] = ∑
a∈A

π(a |s) ⋅ P[Xt+1 = s′ |At = a, Xt = s]
17



MDP+Policy (An Example)
If we take the MDP with ,  and the state transition probabilties:


,      ,        


…and with the policy:


,           ,       


S = {1,2,3,4,5} A = {left, right, eat}

P(s′ |s, left) =
0.1 s = s′ 

0.9 s − s′ = 1
0 otherwise

P(s′ |s, right) =
0.1 s = s′ 

0.9 s′ − s = 1
0 otherwise

P(s′ |s, eat) = {1 s = s′ 

0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

🐞 🍦

1 2 3 4 5

The states:



MDP+Policy (An Example)
If we take the MDP with ,  and the state transition probabilties:


,      ,        


…and with the policy:


,           ,       


Now we will show the resulting Markov reward process:

S = {1,2,3,4,5} A = {left, right, eat}

P(s′ |s, left) =
0.1 s = s′ 

0.9 s − s′ = 1
0 otherwise

P(s′ |s, right) =
0.1 s = s′ 

0.9 s′ − s = 1
0 otherwise

P(s′ |s, eat) = {1 s = s′ 

0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5



MDP+Policy (An Example)
If we take the MDP with ,  and the state transition probabilties:


,      ,        


…and with the policy:


,           ,       


…then we get the following Markov reward process:

S = {1,2,3,4,5} A = {left, right, eat}

P(s′ |s, left) =
0.1 s = s′ 

0.9 s − s′ = 1
0 otherwise

P(s′ |s, right) =
0.1 s = s′ 

0.9 s′ − s = 1
0 otherwise

P(s′ |s, eat) = {1 s = s′ 

0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

🐞 🍦

1 2 3 4 5

0.1 0.1 0.1 0.1 0.55

0.45

0.9

0.45

0.45

0.45

0.45

0.45

0.45



MDP+Policy (An Example)

For example: 
 

+ 
 

 

Pπ(2 |3) = π(left |3) ⋅ P(2 |3,left)+
+π(right |3) ⋅ P(2 |3,right)
+π(eat |3) ⋅ P(2 |3,eat) =
= 0.5 ⋅ 0.9 + 0.5 ⋅ 0 + 0 ⋅ 0 = 0.45

If we take the MDP with ,  and the state transition probabilties:


,      ,        


…and with the policy:


,           ,       


…then we get the following Markov reward process:

S = {1,2,3,4,5} A = {left, right, eat}

P(s′ |s, left) =
0.1 s = s′ 

0.9 s − s′ = 1
0 otherwise

P(s′ |s, right) =
0.1 s = s′ 

0.9 s′ − s = 1
0 otherwise

P(s′ |s, eat) = {1 s = s′ 

0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

🐞 🍦

1 2 3 4 5

0.1 0.1 0.1 0.1 0.55

0.45

0.9

0.45

0.45

0.45

0.45

0.45

0.45



MDP+Policy (An Example)

For example: 
 

 
 

 

Pπ(2 |2) = π(left |2) ⋅ P(2 |2,left)+
+π(right |2) ⋅ P(2 |2,right)+
+π(eat |2) ⋅ P(2 |2,eat) =
= 0.5 ⋅ 0.1 + 0.5 ⋅ 0.1 + 0 ⋅ 1 = 0.1

If we take the MDP with ,  and the state transition probabilties:


,      ,        


…and with the policy:


,           ,       


…then we get the following Markov reward process:

S = {1,2,3,4,5} A = {left, right, eat}

P(s′ |s, left) =
0.1 s = s′ 

0.9 s − s′ = 1
0 otherwise

P(s′ |s, right) =
0.1 s = s′ 

0.9 s′ − s = 1
0 otherwise

P(s′ |s, eat) = {1 s = s′ 

0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

🐞 🍦

1 2 3 4 5

0.1 0.1 0.1 0.1 0.55

0.45

0.9

0.45

0.45

0.45

0.45

0.45

0.45



MDP+Policy (An Example)
Now, for the rewards, suppose the reward function of the MDP is:





and we still use the same policy:


,        ,     


then the reward function of the resulting Markov reward process is:


,  


R(s, a) = {10 s = 5 and a = eat
0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

Rπ(s) = {5 s = 5
0 otherwise



MDP+Policy (An Example)
Now, for the rewards, suppose the reward function of the MDP is:





and we still use the same policy:


,        ,     


then the reward function of the resulting Markov reward process is:


,  


here, for instance.   

R(s, a) = {10 s = 5 and a = eat
0 otherwise

π(left |s) =
0 s = 1
0.5 s ∈ {2,3,4}
0.5 s = 5

π(right |s) =
1 s = 1
0.5 s ∈ {2,3,4}
0 s = 5

π(eat |s) = {0 s ∈ {1,2,3,4}
0.5 s = 5

Rπ(s) = {5 s = 5
0 otherwise

Rπ(5) = π(eat |5) ⋅ R(5,eat) + π(left |5) ⋅ R(5,left) + π(right |5) ⋅ R(5,right) = 0.5 ⋅ 0 + 0.5 ⋅ 10 + 0 ⋅ 0 = 5



(State) Value Function
• Definition: 

 

• Intuition: Value function  is the expected return when starting from 
state .

V(s) = 𝔼[Gt |Xt = s] = 𝔼[R(Xt) + γ ⋅ R(Xt+1) + γ2 ⋅ R(Xt+2) + … |Xt = s]

V(s)
s

25



State Value Function of MDP
General case: 




Version for deterministic policy: 

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]

Vπ(s) = R(s, π(s)) + γ ⋅ ∑
s′ ∈S

P(s′ |s, π(s)) ⋅ Vπ(s′ )

26

(Bellman equation for MDP)



Part 1: Problem Statement



Problem: Model-Free Policy Evaluation

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), estimate the value function.



Example
🐸Agent: 

States are given:  

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??  

Actions are given: 
  A = {l, r}
🐸
📡

Policy is given, e.g.: 
 
 

…

π(l |a) = 0.2, π(r |a) = 0.8,
π(l |b) = 0.3, π(r |b) = 0.7,



Problem: Model-Free Policy Evaluation

• Our task again: 

• Given a policy and an MDP with unknown parameters (or generally an 
environment with which we can interact), estimate the value function.



An Assumption

• Assumption: In what follows we will assume that our MDP has terminal 
states and that the probability of infinitely long runs is zero. 


• Terminal states: Once the system gets into a terminal state, it stays in it. 
The reward in the terminal state is always 0.


• Why do we do this? This assumption will allow us to use the formalism 
for infinite-horizon problems (which is mathematically simpler).



Part 2: Statistical Properties of Estimators 

(An informal recap of what you already know from 
statistics)



Estimators (Statistics)
• Typical setting: 

• We are given a sample of random variables .


• Suppose that we want to estimate some parameter , e.g., suppose all 
the ’s are sampled independently from the same distribution and we 
want to estimate the mean of this distribution. 


• An estimator of  is a function  that maps samples to estimates of the 
parameter .

X1, X2, …, Xn

θ
Xi

θ ̂θ
θ



Estimators as Random Variables

• Example: Let us have a normal distribution with mean  and standard 
deviation . Denote by  an independent sample from 

this distribution. Then the sample mean  is an estimator 

for the population mean .


• Note that, in this example,  is a random variable.

μ
σ X = (X1, X2, …, XN)

̂μ(X) =
1
N

N

∑
i=1

Xi

μ

̂μ(X)



Bias

Bias of an estimator  is defined as: .


If  then we say that  is an unbiased estimator.


Example:  is an unbiased estimator of population mean. Why? 

Because we have .

̂θ BIASθ( ̂θ) = 𝔼θ[ ̂θ(X)] − θ

BIASθ( ̂θ) = 0 ̂θ

1
N

N

∑
k=1

Xk

𝔼 [ 1
N

N

∑
k=1

Xk] =
1
N

N

∑
k=1

𝔼 [Xk] =
1
N

⋅ N ⋅ 𝔼 [Xk] = μ



Mean Squared Error

Mean squared error of an estimator  is defined as: .


It holds .

̂θ MSEθ( ̂θ) = 𝔼θ[( ̂θ(X) − θ)2]

MSEθ( ̂θ(X)) = Varθ( ̂θ(X)) + BIAS( ̂θ(X))2



Consistency

Let  be an independent sample, used to estimate .


A sequence of estimators  is said to be consistent if for every  
it holds: .

XN = (X1, …, XN) θ

̂θN(XN) ε > 0
lim

N→∞
P[ | ̂θN(XN) − θ | < ε] = 1



Why It Matters

• Estimators that we are going to study in this lecture can be analyzed in the 
same framework. After all, they are just statistical estimators.



Part 3: Monte-Carlo Policy 
Evaluation



Monte-Carlo Policy Evaluation (1/5)

Recall the definition of , the return at time  (we have not shown it explicitly for 
MDPs last time):





where ’s and  are random variables —  is the state at time  and  is the 
action at time . We suppose that these random variables are from an MDP with a 
policy  (which together define the distribution of these random variables).

Gt t

Gπ
t = R(Xt, At) + γ ⋅ R(Xt+1, At+1) + γ2 ⋅ R(Xt+2, At+2) + … =

∞

∑
i=0

R(Xt+i, At+i) ⋅ γi

Xi A′ is Xi t Ai
i

π

(for simplicity, we assume that the reward when R(a,s) is deterministic)



Monte-Carlo Policy Evaluation (2/5)
The state value function  is:


.


We were computing  by solving the Bellman equation (directly or iteratively):


.


But there is also another way to approximate . * 
 
 
*This method will not be very efficient for MDPs but bear with me… we are getting somewhere)

Vπ(s)

Vπ(s) = 𝔼[Gπ
t |Xt = s]

Vπ(s)

Vπ(s) = ∑
a∈A

π(a, s) ⋅ [R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′ )]
Vπ(s)



Monte-Carlo Policy Evaluation (3/5)
An episode sampled from an MDP under a policy  is a sequence of states, actions 
and rewards which ends in a terminal state: 


 


where  is the state at time ,  is the action taken at time  and  is the corresponding 
reward obtained at time .

The return at time  for a concrete episode 


               


 

π

s1, a1, r1, s2, a2, r2, s3, a3, r3, …, sT

si i ai i ri
i

t s1, a1, r1, s2, a2, r2…, sT

gt = r1 + γ ⋅ r2 + γ2 ⋅ r3 + … =
T−1

∑
i=0

ri ⋅ γi We can have bounds , 
just remember that all rewards 

after  are 0.

∞

T



Monte-Carlo Policy Evaluation (4/5)

We will now try to approximate  directly using  using 
sampled episodes. After all, expectation can be approximated by an average of 
sampled values.


We will sample finite episodes (after all we can’t sample infinitely long episodes in 
practice). This also means that MC policy estimation can only be used for 
episodic RL problems.

Vπ(s) Vπ(s) = 𝔼[Gπ
t |Xt = s]



Monte-Carlo Policy Evaluation (5/5)

Why the problem is not straightforward: If we only wanted to estimate , 
that would be easy, but we want to estimate  that is we need to 
condition… but we cannot condition arbitrarily… we can only observe episodes 
sampled under the given policy… so we will need to “wait” for  to occur. 

We will see two different MC algorithms to do that: First-Visit MC Estimation 
and Every-Visit MC Estimation.

𝔼[Gt]
𝔼[Gt |Xt = s]

s



First-Visit Monte-Carlo Evaluation
Initialize: . 
For : 

Sample episode .


For each time step :

If  is the first occurrence of state  in the episode 





 /* Increment total visits counter */ 
 /* Increment total return counter */ 

 /* Update current estimate */

G(s) = 0, N(s) = 0, Vπ(s) = undefined for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(s) := G(s) + gi,t

Vπ(s) := G(s)/N(s)



Recall Our Example
🐸Agent: 

States are given:  

c

b

a

END

??

1

??

??

??

??

??
??

??

????

??
??

Rewards??  

Actions are given: 
  A = {L, R}
🐸
📡

Some policy  is given 
(details not important now).

π



First-Visit MC Evaluation (Example)
Given: , , 

Sampled episodes (using given policy ):




After iteration 1: 
 

 
 

——————————————————————————- 
After iteration 2: 

 
 

S = {a, b, c, end} A = {L, R} γ = 1
π

e1 = a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0, end
e2 = a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0, end

G(a) = 10, G(b) = 10, G(c) = 0, G(end) = 0
N(a) = 1, N(b) = 1, N(c) = 1, N(end) = 1
Vπ(a) = 10, Vπ(b) = 10, Vπ(c) = 0, Vπ(end) = 0

G(a) = 30, G(b) = 30, G(c) = 10, G(end) = 0
N(a) = 2, N(b) = 2, N(c) = 2, N(end) = 2
Vπ(a) = 15, Vπ(b) = 15, Vπ(c) = 5, Vπ(end) = 0

Initialize: . 
For : 

Sample episode 
.


For each time step :

If  is the first occurrence of state  in the 
episode 





 /* Increment total visits 
counter */ 

 /* Increment total return 
counter */ 

 /* Update current 
estimate */

G(s) = 0, N(s) = 0 for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s
ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1

G(s) := G(s) + gi,t

Vπ(s) := G(s)/N(s)



First-Visit MC Evaluation (Example)
Given: , , 

Sampled episodes (using given policy ): 




After iteration 1: 
 

 
 

——————————————————————————- 
After iteration 2: 

 
 

S = {a, b, c, end} A = {L, R} γ = 1
π

e1 = a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0, end
e2 = a, R, 0, b, R, 10, c, L, 0, b, R, 10, a, L, 0, end

G(a) = 10, G(b) = 10, G(c) = 0, G(end) = 0
N(a) = 1, N(b) = 1, N(c) = 1, N(end) = 1
Vπ(a) = 10, Vπ(b) = 10, Vπ(c) = 0, Vπ(end) = 0

G(a) = 30, G(b) = 30, G(c) = 10, G(end) = 0
N(a) = 2, N(b) = 2, N(c) = 2, N(end) = 2
Vπ(a) = 15, Vπ(b) = 15, Vπ(c) = 5, Vπ(end) = 0

Initialize: . 
For : 

Sample episode 
.


For each time step :

If  is the first occurrence of state  in the 
episode 





 /* Increment total visits 
counter */ 

 /* Increment total return 
counter */ 

 /* Update current 
estimate */

G(s) = 0, N(s) = 0 for all s ∈ S
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i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
G(s) := G(s) + gi,t
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Statistical Properties (1/7)

• First-visit MC Policy Evaluation is unbiased (and hence also consistent) 
estimator.


• Every-visit MC Policy Evaluation is a biased but consistent estimator, 
which often has better MSE.



Statistical Properties (2/7)
First-visit MC Policy Evaluation is unbiased (and hence also consistent) estimator.


Proof Sketch: 
Assuming Markov property, the first occurrence* of the state  at time  together 
with the subsequence starting at  gives us an unbiased estimate of the return 
starting from  (this is practically from definition), i.e., , which is by 
definition equal to . First-visit MC averages such independent samples 
from different episodes (different episodes => independence).


*Do you see why we cannot take, e.g., the last occurrence? Hint: Are 
subsequences starting with the last occurrence of  special in some way?

s t
t

s 𝔼[Gπ
t |Xt = s]

Vπ(s)

s



Statistical Properties (3/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0

γ = 1



Statistical Properties (4/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0

• Computing  explicitly using Bellman equation: 
 

Hence, .

V
V(1) = 1 + (1 − p) ⋅ V(1) + p ⋅ 0

V(1) =
1
p

γ = 1



Statistical Properties (5/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0

• Exact answer: .


• First-Visit MC:


V(1) =
1
p

𝔼[ ̂VFV(1)] = p + 2(p − 1)p + 3(p − 1)2p + … = p
∞

∑
n=0

(n + 1) ⋅ (1 − p)n = p ⋅
1
p2

=
1
p

γ = 1

UNBIASED



Statistical Properties (6/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0

• Exact answer: .


• Every-Visit MC (Bias):


V(1) =
1
p

𝔼[ ̂VEV(1)] = p +
3
2

(1 − p)p + 2(1 − p)2p + … = p
∞

∑
n=0

n + 2
2

⋅ (1 − p)n = p ⋅
p + 1

p2
=

p + 1
2p

≠
1
p

γ = 1

BIASED



Statistical Properties (7/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0
• Exact answer: .


• Every-Visit MC (Consistency):


 where  is a geometrically distributed r.v. with expectation .


Averaging estimators over  independent episodes, one can show with a bit of algebraic 

manipulations that  for all .

V(1) =
1
p

̂VEV =
T + 1

2
T

1
p

n

P [ ̂Vn −
1
p

< ε] = 1 0 < ε

γ = 1

Consistent



Statistical Properties (7/7)
• Every-visit MC Policy Evaluation is a biased but consistent estimator, 

which often has better MSE.


• Example (Showing that it is biased):

1 0

1 − p 1

p

R(1) = 1 R(0) = 0
• Exact answer: .


• Every-Visit MC (Consistency):


 where  is a geometrically distributed r.v. with expectation .


Averaging estimators over  independent episodes, one can show with a bit of algebraic 

manipulations that  for all .

V(1) =
1
p

̂VEV =
T + 1

2
T

1
p

n

P [ ̂Vn −
1
p

< ε] = 1 0 < ε

γ = 1

Consistent



Incremental Monte-Carlo Evaluation
Initialize: . 
For : 

Sample episode .


For each time step :

    is the state visited at time  in the episode 





 /* Increment total visits counter */ 
 /* Update value function */

N(s) = 0,Vπ(s) = undefined for all s ∈ S
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

N(s) := N(s) + 1
Vπ(s) := Vπ(S) + α ⋅ (gi,t − Vπ(s))

Special case:  When we use  then the resulting incremental MC 

becomes equivalent to every-visit MC.

α =
1

N(s)



Summary (So Far)
• MC Methods: 

• Try to estimate  directly as an average over 
sampled episodes (which is also why they need the episodic settings).


• They do not use the Markov assumption!


• Converge to the true values.


• Can have high variance and some of them are also biased (first-visit MC 
is one which is not biased).

Vπ(s) = 𝔼[Gπ
t |Xt = s]



Part 4: Temporal Difference Learning 

(We are still dealing with policy evaluation)



Temporal Difference Learning: A Teaser

• TD learning combines Monte-Carlo estimation and dynamic 
programming ideas.


• TD learning can be used both in episodic and infinite-horizon non-
episodic settings,


• TD learning updates estimates of  continually, after every consecutive 
tuple state-action-reward-state (therefore we do not need to wait till the 
end of an episode).


….

Vπ



TD-Learning: Basic Idea
Recall: 


Incremental MC: 

. 

Temporal Difference Learning: 

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

Vπ(s) := Vπ(s) + α ⋅ (gi,t − Vπ(s))

Vπ(st) := Vπ(st) + α(ri,t + γ ⋅ Vπ(st+1) − Vπ(st))

≈



TD-Learning: Relationship to Bellman Backup

Recall: 

Bellman equation update rule: 

 

Temporal Difference Learning update rule: 

 

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

Vπ
k+1(s) := R(s, π(s)) + γ ⋅ ∑

s′ ∈S

P(s′ |s, π(s)) ⋅ Vπ
k (s′ )

Vπ(st) := Vπ(st) + α(ri,t + γ ⋅ Vπ(st+1) − Vπ(st))
= (1 − α) ⋅ Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1))

Sample

Expectation



TD-Learning: Pseudocode

Initialize: 

Loop: 

Sample tuple .

Update 

Vπ(s) = 0 for all s ∈ S

(st, at, rt, st+1)
Vπ(st) := Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1)

TD target

− Vπ(st))



TD-Learning: Example 🐸



Iteration 1: ,      
Iteration 2: ,  
Iteration 3: ,  
Iteration 4: , 
Iteration 5: .

e1 = a, R, 0, b, R, 10, c, L, 0, b, R, 0, c, R, 0, end
Vπ(a) := 0
Vπ(b) := 5
Vπ(c) := 0.5(0 + 5) = 2.5
Vπ(b) := 5 + 0.5 ⋅ (0 + 2.5 − 5) = 3.75
Vπ(c) := 2.5 + 0.5 ⋅ (0 + 0 − 2.5) = 1.25

Initialize: 

Loop: 

Sample tuple .

Update 

Vπ(s) = 0 for all s ∈ S

(st, at, rt, st+1)
Vπ(st) := Vπ(st) + α ⋅ (ri,t + γ ⋅ Vπ(st+1)

TD target

− Vπ(st))

α = 0.5, γ = 1
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TD-Learning: Example 🐸
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TD target

− Vπ(st))

α = 0.5, γ = 1

Vπ(a) = 10, Vπ(b) = 5, Vπ(c) = 0, Vπ(end) = 0Every-Visit Monte-Carlo:



What About the ’s?α
• One thing we can do is to have  depend on the number of iterations so far, i.e., we can 

have  instead of just .


• Convergence is guaranteed when  satisfy the following conditions (follows from Robbins-
Munro algorithm): 
 

.


• A sequence which satisfies the above conditions is, e.g., . However, in practice, 

similar sequences do not have to converge very fast…


• Note: It was also proved by Sutton (1988) that, for tabular MDPs, there always exists some 
small enough learning rate  such that TD converges but this result is not very practical.

α
αk α

α′ ks

∞

∑
k=1

αk = ∞,
∞

∑
k=1

a2
k < ∞

ak =
1
k

α



Policy Evaluation: Summary

Table from slides by Prof. Emma Brunskill



Next Time: Model-Free Control



Model-Free Control

• Given an MDP with unknown parameters (or generally an environment 
with which we can interact), find the optimal policy .π



Important Concepts to Refresh…

• Besides the things we discussed today, in the next lecture, we will also 
again use the following concepts:


• the state-action value function ,


• policy iteration and policy improvement.

Qπ(s, a)


