
SMU: Lecture 4
Monday, March 7, 2022

(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)

1

Plan for Today

• A very short recap of important concepts from last lectures.

• Value function approximation.

• Control with value function approximation.

• Intro to Bandits.

2

Part 1: Recap (Q-Learning)

3

State-Action Value Q
• Definition:

 .

• Intuition:

• The value of the return that we obtain if we first take the action in the
state and then follow the policy (including when we visit again).

• Think of it as perturbing the policy — we deviate from following the policy
 only in the first step in .

Qπ(s, a) = R(s, a) + γ ⋅ ∑
s′ ∈S

P(s′ |s, a) ⋅ Vπ(s′)

a
s π s

π
π s

4

-Greedy Policyε

π(a |s) =
1 − ε + ε

|A |
 when a = arg maxa∈A Q(s, a)

ε
|A |

 when a ≠ arg maxa∈A Q(s, a)

We assume ties are decided consistently

5

Q-Learning

1. Initialize: set to be some -greedy policy, set

2. Sample using the distribution given by in the state (for sampling, we will

use the notation). Take the action and observe .

3. While is not a terminal state:

1. Take action and observe .

2.

3.

4. Set . Update /* see next slides */

π ε t = 0
a π0 s0

a ∼ π(s) a r0, s1
st

a ∼ π(st) rt, st+1

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))
π := ε-greedy(Q)

t := t + 1 ε, α

6

Part 2: RL with Function
Approximation (Problem

Description)

7

Limitations of What We Saw So Far
• In the previous lectures, we assumed discrete MDPs with number of

states that was not too large (i.e. the set was not too large).

• Now imagine that we want to learn to play Atari games (which is what
DeepMind did!) and we want to do it from the pixel inputs. How many
states would we need if we wanted to use what we learned in the previous
lectures? … Then we would need at least states (128 colors
with resolution 160 x 192 pixels).

• What we need is function approximation.

S

128160⋅192

8

Limitations of What We Saw So Far
• In the previous lectures, we assumed discrete MDPs with number of

states that was not too large (i.e. the set was not too large).

• Now imagine that we want to learn to play Atari games (which is what
DeepMind did!) and we want to do it from the pixel inputs. How many
states would we need if we wanted to use what we learned in the previous
lectures? … Then we would need at least states (128 colors
with resolution 160 x 192 pixels).

• What we need is function approximation.

S

128160⋅192

9

Basic Idea
• Do not represent the state value function or the state-action value

function explicitly.

• Represent the state value function or the state-action value function
 approximately using a function from some parametrized family,

e.g. as a neural network, linear function, decision tree…

V
Q

V(s)
Q(s, a)

ws ̂V(s; w)

ws Q̂(s, a; w)a
10

w ̂V(s; w)

11

w Q̂(s, a; w)

a, a ∈ {left, right, up, down}

12

State Representation
• States will be represented by feature vectors.

• The feature vector of a state will be denoted as and we can think of
it as a function mapping states to some vector space, e.g. , i.e.

.

• Examples:

• Atari: the feature vector can, e.g., contain the intensities of the pixels
(concatenated).

• Pole balancing: physical features such as velocities, angles…

s x(s)
ℝd

x(s) = (x1(s), x2(s), …, xd(s))T

13

Linear Functions

• Scalar product of a weight vector with the feature vector, which represents
the state:

.

• Linear function approximations can work well but need good features
(which requires feature engineering).

̂Vπ(s; w) = wTx(s)

14

Neural Networks
• Neural network (well, you know them):

• In this lecture we will think of neural networks simply as blackboxes which
we can evaluate and for which we can compute the gradients efficiently
(we will usually omit the subscript from when it is clear from the context).

• In particular, the approximation will have the form , where
is some neural network…

g(x; w)
∇wg(x; w)

w ∇w

Vπ(s; w) = g(x(s); w) g

15

Part 3: Some Background

16

Gradient Descent (1/3)
• A method for finding a (local) optimum of a function.

• In our setting, we want to find that is a local minimum of a
function .

• We do that using gradient descent.

w ∈ ℝd

J(w)

17

Gradient Descent (2/3)

Gradient:

Example:

, .

Then

.

∇J(w) = (∂J
∂w1

(w),
∂J

∂w2
(w), …,

∂J
∂wd

(w))

J(w) = w1 ⋅ w2 + w1 w ∈ ℝ2

∇J(w) = (w2 + 1,w1)

18

Gradient Descent (3/3)

Gradient descent update rule:

(gradient descent algorithm iterates this rule).

wn+1 = wn − α ⋅ ∇J(wn)

19

Stochastic Gradient Descent
• We want to optimize a function of the form where is a random

variable.

• We assume that we can sample from the distribution w.r.t. which the expectation is taken.

• Stochastic gradient descent uses samples to approximate the gradient of using just one
sample (SGD can also use a mini-batch of multiple samples but we will not consider it now for
simplicity) and estimates the gradient of as:

(instead of).

• Assuming that we can exchange the order of expectation and taking gradients (which we can
when is well-behaved), the expected SGD step is the same as the full gradient of .

J(w) J(w) = 𝔼[g(X; w)] X

J(w)

J

∇J(w) ≈ ∇g(X; w)

∇𝔼[g(X; w)]

g J

20

A Useful Property of Mean Squared Loss
Let be independent random variables following some distribution with
expected value .

What is the value (~prediction) that minimizes the mean squared error

?

It is the sample average , which, for , converges to the mean .

Consequence: Learning a predictor under mean squared loss leads to learning a
predictor for conditional expectation (we will explain later what it means for RL).

Y1, Y2, …, Yn
μ = 𝔼[Yi], ∀i

y
1
n

n

∑
i=1

(Yi − y)2

y =
1
n

n

∑
i=1

Yi n → ∞ μ

21

Warm-Up: Learning to “Compress” , (1/3)Vπ(s)

• Suppose that we know and can query it but yet want to learn an
approximation of it… using a parametric function …

• We will use mean-squared error to measure how good the approximation
is, i.e.:

.

• How could we train the approximation using SGD?

Vπ(s)
̂Vπ(s; w)

J(w) = 𝔼π [(Vπ(X) − ̂Vπ(X; w))
2]

22

Warm-Up: Learning to “Compress” , (2/3)Vπ(s)

While (some stopping condition):
Sample a state and compute the gradient of

,

which is:

Take the gradient step:

s
̂Js(w) = (Vπ(s) − V(s; w))2

∇ ̂Js(w) = − 2(Vπ(s) − Vπ(s; w)) ⋅ ∇Vπ(s; w) = 2(Vπ(s; w) − Vπ(s)) ⋅ ∇Vπ(s; w)

w := w − α ⋅ 2(Vπ(s; w) − Vπ(s)) ⋅ ∇V(s; w)

23

Warm-Up: Learning to “Compress” , (3/3)Vπ(s)

• But in reality we will not have access to !

• So we cannot compute the gradient step:
…

• We will therefore need to combine SGD with what we saw in the previous
lectures…

Vπ(s)

w := w − α ⋅ 2(Vπ(s; w) − Vπ(s)) ⋅ ∇V(s; w)

24

Part 4: Policy Evaluation with
Function Approximation

25

Monte-Carlo Value Function Approximation

Basic Idea (not yet complete… wait for the next slide): We can frame the
value function approximation problem as a supervised learning problem
under MSE loss:

Sample an episode under policy :
Training examples: , where denotes the
return from the episode from time .

π s1, a1, r1, s2, a2, r2, …, sT

[s1, g1], [s2, g2], …, [sT−1, gT−1] gi
i

First visit or every-visit? See next slide.26

First/Every-Visit Monte-Carlo Value Function
Approximation

Initialize: .
For :

Sample episode .

For each time step :

If is the first occurrence of state in the episode /* This is for first-visit MC */

 is the state visited at time in the episode

 /* SGD step */

w = some initialization...
i = 1,…, N

ei := si,1, ai,1, ri,1, si,2, ai,2, ri,2, …, si,Ti

1 ≤ t ≤ Ti

t s ei

s t ei

gi,t := ri,t + γ ⋅ ri,t+1 + γ2 ⋅ ri,t+2 + … + γTi−t ⋅ ri,Ti

w := w − α ⋅ (Vπ(x(st); w) − gt) ⋅ ∇V(x(st); w)

27

Intuition About Why It Works

• Recall that what we want to estimate is .

• When using first-visit MC, each of the training examples is an
unbiased (but very noisy!) estimate of . But when we use these
examples and try to find a best mean-squared-error fit then we are
estimating their expectation which equals . And that is why it
works…

Vπ(s) = 𝔼[Gt |Xt = s]

[st, gt]
Vπ(s)

Vπ(s)

28

Convergence of MC VFA (1/3)
• Definition (On-Policy Distribution): Given an MDP and a policy , we

define on-policy distribution as follows.

• In non-episodic settings: is the stationary distribution of the MRP
that is given by the MDP and the policy (recall MDP + policy = MRP).

• In episodic settings: depends also on the distribution of the initial
states (see Sutton’s book for details).

• In what follows, we denote the on-policy distribution by .

π
Pπ

onp

Pπ
onp

Pπ
onp

Pinit

Pπ
onp

29

Convergence of MC VFA (2/3)
• Definition: Mean squared error of value function approximation is defined

as

,

which is the same as

.

MSVEπ(w) = ∑
s∈S

Pπ
onp(s) ⋅ (Vπ(s) − ̂Vπ(s; w))

2

MSVEπ(w) = 𝔼X∼Pπ
onp [(Vπ(s) − ̂Vπ(s; w))

2]
30

Convergence of MC VFA (3/3)

• Theorem: Assume that (i.e. we are assuming linear
function approximation). Then MC VFA converges to weights that are
optimal in the sense that they minimize .

• Caution: This theorem holds for linear function approximation, not for
general functions! We do not have such guarantees for, e.g., arbitrary
neural networks.

̂Vπ(s; w) = wTx(s)

MSVEπ(w)

31

Temporal Difference VFA (1/5)
• For temporal difference learning in the tabular setting, we had the

following update rule:

.

• Now, we will want to have a similar update rule but for the case where
 is only approximated by .

Vπ(st) := Vπ(st) + α ⋅ rt + γ ⋅ Vπ(st+1)

TD-target

− Vπ(st)

Vπ(s) Vπ(s; w)

32

Temporal Difference VFA (2/5)
Recall the Bellman equation (for simplicity, we are showing it for deterministic policy):

which is the same as:

.

We can turn the system of equations above into the following minimization problem:

.

Vπ(s) = R(s, π(s)) + γ ⋅ ∑
s′ ∈S

P(s′ |s, π(s)) ⋅ V(s′)

Vπ(s) = R(s, π(s)) + γ ⋅ 𝔼 [Vπ(Xt+1) |Xt = s]

min
Vπ ∑

s∈S

Ponp(s) ⋅ 𝔼 [(R(s, π(s)) + γ ⋅ Vπ(Xt+1) − Vπ(s))2 Xt = s]
33

Temporal Difference VFA (3/5)
Next we replace by its approximation , yielding:

.

Now, instead of the on policy distribution, we will just take the states as they
come in an episode and instead of the expectation we will use the tuple

 which we get in the current episode (as is common in TD-
learning). That will lead us to the minimization problem:

Vπ(s) ̂Vπ(s; w)

min
Vπ ∑

s∈S

Ponp(s) ⋅ 𝔼 [(R(s, π(s)) + γ ⋅ ̂Vπ(Xt+1; w) − ̂Vπ(s; w))
2

Xt = s]

(st, at, rt, st+1)

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2

34

Temporal Difference VFA (4/5)
We need to solve:

. Denoting

we have

But this is not what TD with function approximation does! TD VFA is a so-
called semigradient method. It does not consider the contribution of

 and considers it fixed.

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2

J(w) = (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))
2

∇J(w) = 2 (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ (γ ⋅ ∇ ̂Vπ(st+1; w) − ∇ ̂Vπ(st; w))

∇ ̂Vπ(st+1; w)
35

Temporal Difference VFA (4/5)
We need to solve:

. Denoting

we have

But this is not what TD with function approximation does! TD VFA is a so-
called semigradient method. It does not consider the contribution of

 and considers it fixed.

min
w (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))

2

J(w) = (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w))
2

∇J(w) = 2 (R(st, rt) + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ (γ ⋅ ∇ ̂Vπ(st+1; w) − ∇ ̂Vπ(st; w))

∇ ̂Vπ(st+1; w)
36

Temporal Difference VFA (5/5)

The TD update rule for value function approximation is:

w := w + α (rt + γ ⋅ ̂Vπ(st+1; w) − ̂Vπ(st; w)) ⋅ ∇ ̂Vπ(st; w)

37

Convergence of TD VFA with Linear Functions

• As for MC VFA, we will use the on-policy distribution and define the mean
squared error w.r.t. it, that is…

• Theorem: Let be the weight vector to which TD VFA converges. Then it holds:

.

• Recall that for MC VFA with linear functions we had convergence of mean squared error to
.

Pπ
onp

MSVEπ(w) = ∑
s∈S

Pπ
onp(s) ⋅ (Vπ(s) − ̂Vπ(s; w))

2

wTD

MSVEπ(wTD) ≤
1

1 − γ
⋅ min

w
MSVEπ(w)

min
w

MSVEπ(w)

38

Part 5: Control with Function
Approximation

39

Basic Idea

• Same ideas, just plugging them into what we were doing in the last
lecture, but there are caveats…

• Instead of approximating , we need to approximate .

• The algorithms are similar to those we saw last week (MC, SARSA, Q-
Learning). Important: the idea of using -greedy policies. The
motivation is the same but we use .

Vπ Qπ(s, a)

ε
Qπ(s, a; w)

40

Basic Idea

• Recall the structure of RL algorithms from the last lecture:

• Maintain an estimate of Q-function.

• Compute an -greedy policy w.r.t. the Q-function estimate.

• Use the policy , either for an episode (MC methods) or for a step

(SARSA and Q-learning).

• Update the Q-function estimate (here we rely on the ideas from value

function approximation).

ε π
π

41

Representing State-Action Pairs

• For control RL problems, we need to encode both states and actions
together.

• The feature vector of a state-action pair will be denoted as
and we can think of it as a function mapping state-action pairs to some
vector space, e.g. , i.e. .

(s, a) x(s, a)

ℝd x(s, a) = (x1(s, a), x2(s, a), …, xd(s, a))T

42

Approximation of Q-Function

• Linear function approximation: Scalar product of a weight vector with
the feature vector, which represents the state-action pair:

.

• Neural network function approximation:

 where is a function represented as a neural network.

Q̂π(s, a; w) = wTx(s, a)

Q̂π(s, a; w) = g(x(s, a); w)

g

43

Weight Updates

• MC:  

• SARSA: 

• Q-Learning: 

w := w + α ⋅ (gt − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

w := w + α ⋅ (r + γQ̂(st+1, at+1; w) − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

w := w + α ⋅ (r + γ max
a∈A

Q̂(st+1, a; w) − Q̂(st, at; w)) ⋅ ∇Q̂(st, at; w)

44

DQN Pseudocode

1: Input C , ↵, D = {}, Initialize w , w�
= w , t = 0

2: Get initial state s0
3: loop

4: Sample action at given ✏-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay bu↵er D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else

12: yi = ri + � maxa0 Q̂(si+1, a
0
;w�

)

13: end if

14: Do gradient descent step on (yi � Q̂(si , ai ;w))
2
for parameters w : �w = ↵(yi � Q̂(si , ai ;w))rw Q̂(si , ai ;w)

15: end for

16: t = t + 1

17: if mod(t,C) == 0 then

18: w� w
19: end if

20: end loop

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 6: CNNs and Deep Q Learning
1

Winter 2022 41 / 53

Slide taken from the Reinforcement Learning course by Prof. Emma Brunskill

Deep Q-Learning

With Neural Networks…
Convergence is not guaranteed.

Two of the reasons why Q-learning with VFA may diverge: correlations
between samples and non-stationary targets.

Partial remedies: experience replay and fixed Q-targets.

There are many variations proposed in the literature with many tricks to
improve deep Q-learning and many are still appearing…

Convergence of MC, SARSA and Q-Learning

Tabular Linear NN

MC ✅
Chattering

(may oscilate at the
end but not diverge)

❌

SARSA ✅
Chattering

(may oscilate at the
end but not diverge)

❌

Q-Learning ✅ ❌ ❌

Convergence

48

Part 6: Double Q-Learning

Double Q-Learning: Motivation
• The following step causes a maximization bias:

because, in general:

, and in fact:

.

• So even if the estimates of were unbiased, would not

have to be unbiased.

Q(st, at) := Q(st, at) + α (rt + γ max
a∈A

Q(st+1, a) − Q(st, at))

𝔼[max{X1, X2, …, Xk}] ≠ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}
𝔼[max{X1, X2, …, Xk}] ≥ max{𝔼[X1], 𝔼[X2], …, 𝔼[Xk]}

Q(s, a) max
a∈A

Q(st+1, a)

Double Q-Learning: Key Idea

• Maintain two different estimates of the state-action value function Q.

• One will be used to select “argmax” element, the other to give the value of
the argmax element. This will reduce the maximization bias because… 
 
…normally we would use … and that could lead to big

overestimation… but if we use we will

reduce this,

max
a∈A

Q(st+1, a)

QB(st+1, arg max
a

QA(st+1, a))

Double Q-Learning (Tabular, Not the DL Version)

The Deep-Learning Version

DQN Pseudocode

1: Input C , ↵, D = {}, Initialize w , w�
= w , t = 0

2: Get initial state s0
3: loop

4: Sample action at given ✏-greedy policy for current Q̂(st , a;w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay bu↵er D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else

12: yi = ri + � maxa0 Q̂(si+1, a
0
;w�

)

13: end if

14: Do gradient descent step on (yi � Q̂(si , ai ;w))
2
for parameters w : �w = ↵(yi � Q̂(si , ai ;w))rw Q̂(si , ai ;w)

15: end for

16: t = t + 1

17: if mod(t,C) == 0 then

18: w� w
19: end if

20: end loop

Emma Brunskill (CS234 Reinforcement Learning.)Lecture 6: CNNs and Deep Q Learning
1

Winter 2022 41 / 53

Slide taken from the Reinforcement Learning course by Prof. Emma Brunskill

Compare It With Deep Q-Learning

