
CONVEX HULL IN 3 DIMENSIONS

PETR FELKEL
FEL CTU PRAGUE

felkel@fel.cvut.cz

https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start

Based on [Berg], [Preparata], [Rourke] and [Boissonnat]

Version from 23.10.2014

Felkel: Computational geometry

(2 / 35)

Talk overview

� Lower bounds for convex hull in 2D and 3D

� Other criteria for CH algorithm classification

� Recapitulation of CH algorithms

� Terminology refresh

� Convex hull in 3D

– Terminology

– Algorithms
• Gift wrapping

• D&C Merge

• Randomized Incremental

www.cguu.com

www.cguu.com

Felkel: Computational geometry

(3 / 35)

Lower bounds for Convex hull

� O(n log n) in E2, E3

– output insensitive

� O(n h), O(n logh), h is number of CH facets

– output sensitive algs.

� O(n) for sorted points and for polygon

� O(log n) for new point insertion in online algs.

Felkel: Computational geometry

(4 / 35)

Other criteria for CH algorithm classification

� Optimality – depends on data order (or distribution)

In the worst case x In the expected case

� Output sensitivity – depends on the result ~ O(f(h))

� Extendable to higher dimensions?

� Off-line versus on-line

– Off-line – all points available, preprocessing for search speedup

– On-line – stream of points, new point pi on demand, just one new
point at a time, CH valid for {p1, p2 ,…, pi }

– Real-time – points come as they “want”

(not faster than optimal constant O(log n) inter-arrival delay)

� Parallelizable x serial

� Dynamic – points can be deleted

� Deterministic x approximate (lecture 13)

Felkel: Computational geometry

(5 / 35)

Graham scan

� O(n log n) time and O(n) space is

– optimal in the worst case

– not optimal in average case

(not output sensitive)

– only 2D

– off-line

– serial (not parallel)

– not dynamic

O(n) for polygon (will be discussed in seminar [9])

tos

p

sos

pop

Felkel: Computational geometry

(6 / 35)

Jarvis March – Gift wrapping

� O(hn) time and O(n) space is

– not optimal in worst case O(n2)

– may be optimal if h << n (output sensitive)

– 3D or higher dimensions (see later)

– off-line

– serial (not parallel)

– not dynamic

p1 p2

ph

Felkel: Computational geometry

(7 / 35)

Divide & Conquer

� O(n log n) time and O(n) space is

– optimal in worst case (in 2D or 3D)

– not optimal in average case (not output sensitive)

– 2D or 3D (circular ordering), in higher dims not optimal

– off-line

– Version with sorting (the presented one) – serial

– Parallel for overlapping merged hulls

(see Chapter 3.3.5 in Preparata for details)

– not dynamic

a

b

Felkel: Computational geometry

(8 / 35)

Quick hull

� O(n log n) expected time, O(n2) the worst case

and O(n) space in 2D is

– not optimal in worst case O(n2)

– optimal if uniform distribution

then h << n (output sensitive)

– 2D, or higher dimensions [see http://www.qhull.org/]

– off-line

– serial (not parallel)

– not dynamic

[Mount]

Felkel: Computational geometry

(9 / 35)

Chan

� O(n log h) time and O(n) space is

– optimal for h points on convex hull (output sensitive)

– 2D and 3D --- gift wrapping

– off-line

– Serial (not parallel)

– not dynamic

[Mount]

Felkel: Computational geometry

(10 / 35)

Preparata’s on-line algorithm

� New point p is tested

– Inside –> ignored

– Outside –> added to hull
• Find left and right supporting lines (touch at supporting points)

• Remove points between supporting points

• Add p to CH between supporting lines

[Preparata]

Felkel: Computational geometry

(11 / 35)

Overmars and van Leeuven

� Allow dynamic CH

(on-line insert & delete)

� Manage special tree with all intermediate CHs

� Will be discussed on seminar [7]

[Preparata]

Felkel: Computational geometry

(12 / 35)

Convex hull in 3D

� Terminology

� Algorithms

1. Gift wrapping

2. D&C Merge

3. Randomized Incremental

Felkel: Computational geometry

(13 / 35)

� Polytope (d-polytope)

= convex hull of finite set of points in Ed

� Simplex (k-simplex, d-simplex)

= CH of k + 1 affine independent points

= “Special” Polytope with all the points are on the CH

Terminology

1-simplex 2-simplex 3-simplex

2-polytop 3-polytop

Felkel: Computational geometry

(14 / 35)

Terminology (2)

� Affine combination

= linear combination of the points {p1, p2, …, pn}
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R

� Affine independent points

= no one point can be expressed as affine combination of

the others

� Convex combination

= linear combination of the points {p1, p2, …, pn}
whose coefficients {l1, l2, …, ln} sum to 1, and li œ R+

0

(i.e., "i œ {1,…,k}, li ¥ 0)

p1

p2
p

p1

p2

p
∑

=

n

i
ii

p
1

λ

Felkel: Computational geometry

(15 / 35)

Terminology (3)

� Any (d-1)-dimensional hyperplane h divides the space into

(open) halfspaces h+ and h–,
so that En = h+ (h (h–

� Def: h+ = h+ (h, h– = h– (h (closed halfspaces)

� Hyperplane supports a polytope P

(Supporting hyperplane)

– if h ' P is not empty and

– if P is entirely contained within either h+ or h–

h
P

h+

h–

h+

h

h–

P P h
h+

h–

In 2D:

P’

Felkel: Computational geometry

(16 / 35)

Faces and facets

� Face of the polytope

= Intersection of polytope P with a supporting

hyperplane h

– Faces are convex polytops of dimension d ranging

from 0 to d – 1

– 0-face = vertex

– 1-face = edge

– (d – 1)-face = facet

In 3D we often say face, but more precisely a facet

(In 3D a 2-face = facet)

Proper faces:

Vertices: a,b,c,d

Edges: ab, ac, ad, bc, bd, cd

Facets: abc, abd, acd, bcd

Felkel: Computational geometry

(17 / 35)

Proper faces

� Proper faces

= Faces of dimension d ranging from 0 to d – 1

� Improper faces

= proper faces + two additional faces:

– {} = Empty set = face of dimension -1

– Entire polytope = face of dimension d

Improper faces:

Empty set {}

Vertices: a,b,c,d

Edges: ab, ac, ad, bc, bd, cd

Facets: abc, abd, bcd

Entire polytope: abcd

Felkel: Computational geometry

(18 / 35)

Incident graph

� Stores topology of the polytope

� Ex: 3-simplex:

� D-simplex is very regular face structure:

– 1-face for each pair of vertices

– 2-face for each triple of vertices

Dimension

-1

0

1

2

3
[Boissonnat]

Felkel: Computational geometry

(19 / 35)

Facts about polytopes

� Boundary o polytope is union of its proper faces

� Polytope has finite number of faces (next slide).

Each face is a polytope

� Polytope is convex hull of its vertices (the def)

(its bounded)

� Polytope is the intersection of finite number of

closed halfspaces h+

(conversely not: intersection of closed halfspaces

may be unbounded => called polyhedron or

unbounded polytope)

Felkel: Computational geometry

(20 / 35)

Number of faces on a d-simplex

� Number of j-dimensional faces on a d-simplex

= number of (j+1)-element subsets from domain of

size (d+1)

� Ex.: Tetrahedron = 3-simplex:

– facets (2-dim. faces)

– edges (1-dim. faces)

– vertices (0-dim faces)

4
!1!3

!4

12

13
==









+

+

6
!2!2

!4

11

13
==









+

+

4
!3!1

!4

10

13
==









+

+

Felkel: Computational geometry

(21 / 35)

Complexity of 3D convex hull is O(n)

� The worst case complexity � if all n points on CH

=> use simplical 3-polytop for complexity derivation

1. has all points on its surface – on the Convex Hull

2. has usually more edges E and faces F than 3-polytope

3. has triangular facets, each generates 3 edges,

shared by 2 triangles => 3F = 2E 2-manifold

� V – E + F = 2 … Euler formula for V = n points

V – E + 2E/3 = 2 F = 2E / 3

V – 2 = E / 3 F = 2V – 4

E = 3V – 6, V = n F = O(n)

E = O(n)

–

Felkel: Computational geometry

(22 / 35)

1. Gift wrapping in higher dimensions

� First known algorithm for n-dimensions (1970)

� Direct extension of 2D alg.

� Complexity O(nF)

– F is number of CH facets

– Algorithm is output sensitive

– Details on seminar,

assignment [10]

[Preparata]

Felkel: Computational geometry

(23 / 35)

The angle comparison [Preparata 3.4.1]

[Preparata]

Cotangent of the agle φk between halfplanes F and epk

= – |UP2| / |UV| , where |UP2|= vk.a and |UV| = vk.n

For each Pk compute φk = arcctan(– vk.a / vk.n),

The angle is max φk

φk

Felkel: Computational geometry

(24 / 35)

2. Divide & conquer 3D convex hull [Preparata, Hong77]

� Sort points in x-coord

� Recursively split, construct CH, merge

� Merge takes O(n) => O(n log n) total time

[Rourke]

Felkel: Computational geometry

(25 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

� Merge(C1 with C2) uses gift wrapping

– Gift wrap plane around edge e – find new point p on C1 or on C2

(neighbor of a or b)

– Search just the CW or CCW neighbors around a, b

C1

C2

[Rourke]

Felkel: Computational geometry

(26 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

� Performance O(n log n) rely on circular ordering

– In 2D: Ordering of points around CH

– In 3D: Ordering of vertices around 2-polytop C0

(vertices on intersection of new CH edges with

separating plane H0)

[ordering around

horizon of C1 and C2

does not exist,

both horizons may

be non-convex and

even not simple

polygons]

– In ¥ 4D: Such ordering does not exist

[Boissonnat]

Felkel: Computational geometry

(27 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

Merge(C1 with C2)

� Find the first CH edge L connecting C1 with C2

� e = L

� While not back at L do

– store e to C

– Gift wrap plane around edge e – find new point P on C1 or on C2

(neighbor of a or b)

– e = new edge to just found end-point P

– Store new triangle eP to C

� Discard hidden faces inside CH from C

� Report merged convex hull C

Felkel: Computational geometry

(28 / 35)

Divide & conquer 3D convex hull [Preparata, Hong 77]

� Problem of gift wrapping [Edelsbrunner 88]

– The edges on horizon do not form simple circle but a

“barbell” 0,2,4,0,1,3,5,1
Do not stop here!

[Berg]

Left horizon

barbell (činka)

Felkel: Computational geometry

(29 /35)

3. Randomized incremental alg. principle

1. Create tetrahedron (smallest CH in 3D)

– Take 2 points p1 and p2

– Search the 3rd point not lying on line p1p2

– Search the 4th point not lying in plane p1p2 p3 …if not found, use 2D CH

2. Perform random permutation of remaining points {p5,…, pn}

3. For pr in {p5,…, pn} do add point pr to CH(Pr-1)

Notation: for r ¥ 1 let Pr = {p1,…, pr} is set of already processed pts

– If pr lies inside or on the boundary of CH(Pr-1) then do nothing

– If pr lies outside of CH(Pr-1) then
• find and remove visible faces

• create new faces (triangles) connecting pr with lines of horizon

[Berg]

Felkel: Computational geometry

(30 / 35)

Conflict graph

� Stores unprocessed points with facets of CH they see

� Bipartite graph

points pt, t > r … unprocessed points

facets of CH(Pr)… facets of convex hull

conflict arcs … conflict, as visible

facets cannot be

in CH

� Maintains sets:

Pconflict(f) … points, that see f

Fconflict(pr)… facets visible from pr

(visible region – deleted after insertion of pr)
[Berg]

Conflict graph – init and final state

� Initialization

– Points {p5,…, pn} (not in tetrahedron)

– Facets of the tetrahedron (four)

– Arcs – connect each tetrahedron
facet with points visible from it

� Final state

– Points – {} = empty set

– Facets of the convex hull

– Arcs - none

Felkel: Computational geometry

(31 / 37)

[Berg]

Felkel: Computational geometry

(32 / 35)

Visibility between point and face

� Face f is visible from a point p if that point lies in the open

half-space on the other side of hf than the polytope

f

p

q

f is visible from p (p is above the plane)

f is not visible from q

f is not visible from r lying in the plane of f
(this case will be discussed next)

rhf

p ϵ Pconflict(f), p is among the points that see the face f
f ϵ Fconflict(p) f is among the faces visible from point p

Felkel: Computational geometry

(33 / 35)

New triangles to horizon

� Horizon = edges e incident to visible and invisible facets

� New triangle f connects edge e on horizon and point pr and

– creates new node for facet f

– add arcs to points visible from f (subset from Pcoflict(f1) (Pcoflict(f2))

� Coplanar triangles on the plane epr are

merged with new triangle.

Conflicts are copied from the deleted triangle (same plane)

[Berg]

[Berg]

updates the conflict graph

Input:
Output:

Felkel: Computational geometry

(34 /35)

Incremental Convex hull algorithm

IncrementalConvexHull(P)
Set of n points in general position in 3D space
The convex hull C=CH(P) of P

1. Find four points that form an initial tetrahedron, C = CH({p1,p2 ,p3 ,p4 })
2. Compute random permutation {p5, p6,…, pn} of the remaining points
3. Initialize the conflict graph with all visible pairs (pt,f),

where f is facet of C and pt, t > 4, are non-processed points
4. for r = 5 to n do …insert pr, into C
5. if(Fconflict(pr) is not empty) then …pr is outside, any facet is visible
6. Delete all facets Fconflict(pr) from C … only from hull C, not from G
7. Walk around visible region boundary, create list L of horizon edges
8. for all e œ L do
9. connect e to pr by a new triangular facet f
10. if f is coplanar with its neighbor facet f’ along e
11. then merge f and f’, take conflict list from f’
12. else … determine conflicts for new face f

… [continue on the next slide]

Input:
Output:

Felkel: Computational geometry

(35 /35)

Incremental Convex hull algorithm (cont…)

12. else … not coplanar => determine conflicts for new face f
13. Create node for f in G //… new face in conflict graph G
14. Let f1 and f2 be the facets incident to e in the old CH(Pr-1)
15. P(e) = Pcoflict(f1) (Pcoflict(f2)

16. for all points p œ P(e) do
17. if f is visible from p, then add(p, f) to G … new edges
18. Delete the node corresponding to pr and the nodes corresponding

to facets in Fcoflict(pr) from G, together with their incident arcs
19. return C

Complexity: Convex hull of a set of points in E3 can be computed
incrementally in O(n log n) randomized expected time
(process O(n) points, but number of facets and arcs depend on the order
of inserting points – up to O(n2))

For proof see: [Berg, Section11.3]

Convex hull in higher dimensions

� Convex hull in d dimensions can have Ω(nd/2)

Proved by [Klee, 1980]

� Therefore, 4D hull can have quadratic size

� No O(n log n) algorithm possible for d>3

� These approaches can extend to d>3

– Gift wrapping

– D&C

– Randomized incremental

– QuickHull

Felkel: Computational geometry

(36 / 37)

Felkel: Computational geometry

(37 / 35)

Conclusion

� Recapitulation of 2D algorithms

� >=3D algorithms

– Gift wrapping

– D&C

– Randomized incremental

– QuickHull

Felkel: Computational geometry

(38 / 35)

References

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapter 11, http://www.cs.uu.nl/geobook/

[Boissonnat] J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry,
Cambridge University Press, UK, 1998. Chapter 9 – Convex hulls

[Preparata] Preperata, F.P., Shamos, M.I.: Computational Geometry. An

Introduction. Berlin, Springer-Verlag,1985.

[Mount] David Mount, - CMSC 754: Computational Geometry, Lecture
Notes for Spring 2007, University of Maryland, Lecture 3.
http://www.cs.umd.edu/class/spring2007/cmsc754/lectures.shtml

[Chan] Timothy M. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions., Discrete and

Computational Geometry, 16, 1996, 361-368.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.389

